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1. INTRODUCTION 

 

Radar data within the Bureau of Meteorology (the Bureau) are currently utilised in a 

predominantly qualitative manner. Their main use is for nowcasting—predicting the weather 

within a timescale of several hours and spatial scales of several kilometres. Forecasters 

routinely use it to visually determine the presence (or lack thereof) of severe storms and guide 

the issuance of severe weather or flash flood warnings. To enable quantitative use of radar data, 

the Bureau initiated the Strategic Radar Enhancement Project (SREP). Specifically, radar data 

can be assimilated in numerical weather prediction (NWP) models to improve their initial 

conditions and subsequent predictions. Quality control (QC) of the radar data is central to 

providing the data assimilation system with clean data and estimates of the error characteristics 

of the observations. It will also benefit quantitative precipitation estimation and forecasting 

(QPE and QPF) and generation of public weather radar images. 

 

Weather radar is a microwave pulse and, like all electromagnetic radiation, its path is influenced 

by the refractive index of the medium (in this case the atmosphere) through which it propagates. 

The refractive index of the atmosphere is related to temperature, pressure and water vapour 

content. In some instances, the vertical gradients of these variables can be large enough so as to 

bend the radar beam from the path it would take in a standard atmosphere, a phenomenon 

known as anomalous propagation (anaprop). Furthermore, if the gradients of temperature or 

moisture are large enough the radar beam can become trapped in shallow layers in the 

atmosphere (termed ducting) producing returns from the ground. Such conditions are frequently 

encountered over the ocean, under the presence of a high pressure cell where significant 

evaporation from the ocean coupled with a temperature inversion can produce suitable 

conditions for ducting of the radar beam. Much of Australia’s population resides by the coast 

and as a result, a large proportion of the Bureau of Meteorology’s (the Bureau) radar network is 

also located there, resulting in the potential for a large proportion of radar data to be 

contaminated by returns from anaprop of the radar beam.
1
 

Anaprop has been observed since the advent of radar and the meteorological conditions which 

produce it have been well described in the literature (e.g. Doviak and Zrnić, 1984; Meischner et 

al., 1997). It is easily recognized by operational forecasters due to its shallow vertical extent and 

transient temporal characteristics, however, these same properties make its automated detection 

difficult. Automated detection of anaprop is of fundamental importance in quantitative weather 

radar applications, such as data assimilation for numerical weather prediction (NWP), as 

assimilation of anaprop could lead to large overestimates of precipitation totals and initiate 

spurious convection. Furthermore, small errors in quantitative precipitation estimation (QPE) 

                                                      
1
 The term anaprop is most often used to describe the returns visible on radar images under 

conditions where ducting layers occur (an extreme example of anaprop), however it also refers 

to departures from normal propagation which the radar beam may experience. We will generally 

use anaprop in its former use when referring to its manifestation in radar images, however, in 

some instances will use it to describe the refraction of the radar beam under non-standard 

atmospheric conditions. 
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have been shown to propagate nonlinearly in peak rate and runoff volume in hydrologic 

calculations (Faures et al., 1995) potentially having a dramatic impact on the efficacy of flood 

forecasts. 

Several methods have been developed to mitigate anaprop, each of which has advantages and 

shortcomings (for a thorough review see Steiner and Smith (2002)). The first is to site the radar 

at an appreciable height above mean sea level (MSL) as conditions conducive to anaprop 

usually occur close to MSL (Bech et al., 2007; Brooks et al., 1999). Practicalities, however, do 

not always permit raised siting of the radar so other methods have been developed. These 

methods can be classified into two broad categories; those which perform signal processing on 

the return radar beam at the radar site, and those which analyse the data post-acquisition. 

1.1 On-site processing 

On-site processing is generally performed via filtering the Doppler spectrum in either the time 

or frequency domains (Keeler and Passarelli, 1990). The near-zero Doppler velocity and narrow 

spectrum width of anaprop can be exploited to remove these signals, however, an unwanted side 

effect is that precipitation with a Doppler velocity near zero is also excluded. This is commonly 

observed in widespread stratiform rain, where data are often missing at the zero isodop. 

Additionally, notch filtering of near zero velocity echoes is ineffective for anaprop over sea as 

waves have true measurable velocities. Another disadvantage of this technique (and the reason 

that it is performed on-site) is that it requires processing of the in-phase and quadrature-phase (I 

and Q) time series resulting in huge datasets that are unable to be transmitted and archived 

given current computing limitations. 

1.2 Post-data-acquisition processing 

Due to the aforementioned problems of archiving the raw I and Q signals, much effort has been 

placed on post-processing of archived data. Post-processing techniques have relied mainly on 

analysing quantities derived from the spatial and temporal information of the reflectivity field. 

Spatial information is usually conveyed in the form of gradients in the reflectivity field between 

adjacent range gates in either the horizontal or vertical dimensions (Alberoni et al., 2001; 

Kessinger et al., 2004; Steiner and Smith, 2002). There are varying mathematical descriptions 

of the gradient of the reflectivity field, however, common formulations are texture, spin (Steiner 

and Smith, 2002) and the statistical features (mean, median, mode and standard deviation) 

calculated within a local neighbourhood of the range gate in question. These fields usually 

exhibit quite different probability distribution functions (PDFs) for echoes from precipitation, 

clutter or anaprop. Parameters derived from the reflectivity gradient field have been used within 

differing probabilistic classification algorithms including fuzzy logic (Gourley et al., 2007; 

Hubbert et al., 2009; Kessinger et al., 2004), neural network (Grecu and Krajewski, 2000; 

Krajewski and Vignal, 2001; Lakshmanan et al., 2007; Luke et al., 2008) and Bayesian 

(Moszkowicz et al., 1991; Rico-Ramirez and Cluckie, 2008). Although these methodologies 

have been developed to take advantage of polarimetric variables, their formulation enables them 

to be applied to radar systems utilising only reflectivity measurements at single wavelength and 

polarization.  
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The Bureau radar network consists of single polarization C and S band radars, some of which 

have Doppler capability. Furthermore, the only moments which are routinely stored by the 

Bureau are corrected reflectivity (the reflectivity after Doppler notch filtering and range 

correction has been applied) and Doppler velocity. Therefore, to extract as much useful 

information as possible from these moments and produce quality-controlled data useful for 

assimilation and QPE, texture-based methods combined with classification algorithm techniques 

need to be employed. In this paper, we present the development of a Bayesian classifier, known 

as a naïve Bayes classifier (NBC), which takes as input texture-based fields derived from 

corrected reflectivity. The NBC is a supervised learning classification algorithm which requires 

training datasets where it is known a priori if the returns originate from precipitation or anaprop 

(Rico-Ramirez and Cluckie, 2008). The algorithm developed is similar to that presented by 

Rico-Ramirez and Cluckie (2008); however, we demonstrate its efficacy with the use of single 

polarization data using only corrected reflectivity. 

In this document we present a brief climatology of anaprop in several Australian capital cities 

which we derive from archived radiosonde sounding data. We then present the development of 

an algorithm, based on Bayesian statistics, to identify and distinguish anaprop returns from 

those which originate from precipitation. 

1.3 An example of spurious radar returns caused by 
anomalous propagation 

To illustrate the problem anaprop presents for radar reflectivity assimilation, consider Fig. 1(a) 

which shows a plan position indicator (PPI) radar image obtained from the Kurnell radar on 31 

January 2011. It was obtained during the lowest tilt of the volume scan (0.7 degrees) at 1100 

UTC. Standard UTC time will be used in this paper, however for reference, local time (LT) is 

UTC + 10 hours normally and UTC + 11 hours during daylight saving (EDT). The coastline of 

Australia is indicated by the heavy black line and many returns can be seen emanating over the 

ocean. The magnitudes of the returns are 35–40 dBZ, values typical of returns from showers in 

this location. These returns, however, are not from hydrometeors (i.e. rain), but rather, from the 

ocean surface and are the result of a ducting layer present near the ocean surface. We can 

ascertain that the returns are not from rain because they are absent in higher elevation scans (see 

Fig. 1(b)); sometimes rain also has a shallow vertical extent, a point with implications which we 

will return to later. There are also some isolated returns to the west of the radar which are due to 

a combination of topography and ‘clear-air’
2
 returns. It is apparent that if this information was 

assimilated the NWP model would attempt to create precipitation where none was present. The 

purpose of this report is to present a methodology of objectively discriminating anaprop echoes 

from weather. 

                                                      
2
 Clear-air returns are returns measured when there are no meteorological targets (i.e. 

clouds/rain) present. They can be due to either (1) returns from birds, insects or (2) refractivity 

(humidity) gradients in the atmosphere, which is termed Bragg scattering. 
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Fig. 1: (Left) PPI obtained from the Kurnell radar at 1100 UTC (2200 LT). Some of the returns are of the 

order 35–45 dBZ which is also typical of values obtained from measurements of showers in this location. 

(Right) RHI obtained at an azimuth of 100 degrees from North. Significant reflectivity values are prevalent 

between 80 to 130 km range, however, they are only present in the lower two elevations, signifying their 

source is from anaprop. Only reflectivities above 10 dBZ are shown. The azimuth of the RHI is indicated by 

the black line shown on the PPI.
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2. A BRIEF CLIMATOLOGY OF ANAPROP IN THE SYDNEY 
REGION 

2.1 Atmospheric conditions required for anaprop 

The degree of curvature of the radar beam is described by the index of refraction n, however 

this quantity is near unity making it convenient to introduce the refractivity N which can be 

approximated by, 

     TepTnN 48106.77101 6   (1) 

 

where p is the total pressure and e the partial pressure of water in hPa, respectively and T is the 

absolute temperature in kelvin (Doviak and Zrnić, 1984). The radius of curvature of the beam r 

can be related to the gradient refractivity with height h by (Brussard and Watson, 1995), 

 

 

  1571

1

dhdN
k

R

r
e

e 
  (2) 

 

where Re is the true Earth radius and ke is the effective Earth radius factor. The refractive index 

gradient for microwave frequency radiation near the Earth’s surface is approximately –39 N 

km
–1

 resulting in an effective Earth radius factor of ke = 4/3, which is known as the ‘standard 

refraction’ and is what is assumed for radar displays. Other conditions which can occur are: 

 ducting ke < 0 

 super refraction 0  ke   4/3 

 subrefraction ke   4/3 

The physical representation of the various conditions is shown in Fig. 2. Sometimes these 

conditions are also expressed in terms of the refractivity gradient since this quantity is 

measurable (for instance, it can be derived from radiosonde data): 

 ducting 
1157.0  mdhdN  

 super refraction 
1157.00787.0  mdhdN  
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 standard refraction 
10787.00  mdhdN  

 subrefraction 
10  mdhdN  

Common meteorological situations for anaprop to occur are: (1) when warm dry air from land 

flows over water resulting in a near-surface temperature inversion and large increases in surface 

humidity due to water vapour fluxes from the ocean, (2) within the nocturnal boundary layer 

due to strong radiative cooling at the surface, (3) after the passage of cold fronts due to 

humidification of the boundary layer by precipitation. The example presented in Fig. 1 was 

most likely due to condition one. Such conditions are common for many coastal regions in 

Australia where the majority of the population reside and many of the Bureau’s radars are 

located.  

 

Fig. 2: Schematic of the different propagation conditions of microwave radiation in the atmosphere. From 

US Weather Bureau (1967) 



 

 A Bayesian methodology for detecting anomalous propagation in radar reflectivity observations 7 

2.2 Datasets 

The data used were from the historical record of radiosonde measurements collected at Sydney 

for the period 2004–2010. Sydney was chosen as it is a major population centre in Australia and 

comprises one of the ‘test-bed’ centres for the SREP project, the others being Adelaide, 

Brisbane and Melbourne. Sonde releases are conducted at Sydney airport usually twice daily at 

0000 UTC and 1200 UTC (1000 and 2100 EST). 

The Bureau archives two sounding data products labelled as ‘significant level’ and ‘standard 

level’. The standard levels are 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 

30 and 20 hPa, which is too coarse a resolution to characterize anaprop. For instance, ducts 

which form due to evaporation over the ocean are typically of the order of a few metres to a few 

tens of metres deep (Brooks et al., 1999; Lenouo, 2012). The ‘significant level’ dataset is 

typically 1 Hz data transmitted from the sonde, which correspond to a reading very 5–10 m for a 

typical balloon ascent rate. 

 

Fig. 3: (Left) sounding obtained at 0018 UTC (11.18 EDT) at Sydney airport. A strong temperature and 

humidity inversion is present at around 980 hPa. Despite being obtained 11 hours before the PPI shown in 

Fig. 1, the inversion and ducting layer persisted for many hours and was responsible the presence of 

anaprop. (Right) The corresponding profile of refractivity. The delineation of conditions for ducting, super 

refraction, normal refraction and sub refraction are indicated. Note the presence of many different 

refractivity conditions in the lowest 5 km. 

A sounding of the ‘standard level’ dataset obtained at 0018 UTC and the corresponding 

refractivity profile is shown inFig. 3. It was obtained approximately 11 hours before the anaprop 

present in Fig. 1, however radar images taken near the time of the sounding (not shown) 

indicate a comparable amount of anaprop. A strong temperature and moisture inversion is 

present below about 980 hPa as are large fluctuations in the refractivity gradient. There are 

several data points with extreme negative values of refractivity gradient especially in the lowest 

2 km which corresponds to the region below the temperature peak present near 900 hPa in the 

sounding. Thus the region below 900 hPa is especially conducive to producing ducts. 
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2.3 Prevalence of ducts 

Refractivity profiles were calculated for all radiosonde soundings obtained during the period 1 

January 2004 through 31 December 2009. The analysis would have been extended before this 

period; however, the transmission of radiosonde data changed frequency from approximately 

every five seconds to one second during 2003 which would introduce biases to the following 

analysis. 

The number of ducts, super-refractive and sub-refractive conditions (ducts, supref and subref, 

respectively) was calculated for each category and averaged over each month. If two (or more) 

consecutive (in height) measurements were found to be of one category then this was counted 

only as one instance of the particular category, rather than two (or more). Furthermore, only 

observations below 800 hPa were included in the calculation as ducts above this level don’t 

contribute to anaprop as the angle of incidence of the radar beam to the ducting layer is too 

large to be internally reflected. The results are shown in Fig. 4
3
, and indicate a clear seasonal 

cycle in the prevalence of ducts and super refractive layers with the minimum occurring during 

the winter months and maximum during summer. 

 

Fig. 4: Climatology of ducts, super refractive and sub refractive conditions at Sydney airport for the period 

1 January 2004 to 31 December 2009. Only measurements below 850 hPa have been included in the 

calculation. 

                                                      
3
 We will present box plots several times in this paper as they provide a great deal of 

information. The horizontal line shows the median value while the bottom and top of the box 

represent the 25
th
 and 75

th
 percentiles. The top and bottom of the whiskers display 1.5 times the 

interquartile range of the data or roughly two standard deviations. Points below (above) the 

bottom (top) of the whiskers are designated outliers. The width of the boxes is proportional to 

the square root of the number of observations within the groups. Finally, the notches in the 

boxes give an indication of the statistical significance of the difference between the median of 

the samples; boxes in which the notches do not overlap have significantly different medians. 
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Fig. 5: PDFs of the frequency of occurrence of atmospheric refractivity conditions as a function of height. 

Ducts and super-refractive conditions display a greater propensity to form in the lowest ~ 30 hPa of the 

atmosphere, while sub-refractive conditions show a nearly linear relationship in the lowest 200 hPa of the 

atmosphere. 

Histograms of the probability of occurrence of each of the refractivity categories as a function 

of height (below 800 hPa) are shown in Fig. 5. Ducts are more likely to occur just near the 

surface, which is particularly important as ducts at this location are more likely to result in 

anaprop than those which are elevated. Super refractive conditions also are more likely to occur 

just near the surface. The probabilities shown in Fig. 5 are the relative probability for each class 

and not the probability of occurrence of a particular category. However, referring to Fig. 4, it 

can be seen that the number of ducts, sub and super refractive conditions are approximately 

equal, such that a general comparison can be made. 

The seasonal cycle of duct heights was also calculated and is shown in Fig. 6. It shows that 

ducts are generally deeper during October to March (as well as more common when compared 

with Fig. 4). The enhanced prevalence and depth of ducts during the warmer months is due to 

the southward progression of the subtropical high which results in strong temperature and 

humidity inversions similar to the conditions shown in the sounding of Fig. 3. Often this ridge of 

high pressure will form a blocking pattern in the Tasman Sea resulting in several consecutive 

days with conditions conducive for ducts (Trenberth and Mo, 1985). 
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Fig. 6: Seasonal cycle of duct heights at Sydney.
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3. RADAR DATA 

The data were obtained with the Kurnell radar located south of Sydney at 34.01° S, 151.23° E at 

an altitude of 64 m above MSL. The Kurnell radar is C-band (5 cm wavelength) with a 3 dB 

beam width of 1°. The data are collected in polar coordinate format, comprising 360 azimuthal 

beams each consisting of 596 range gates with a radial spacing of 250 m. The radar operating 

characteristics are summarized in Table 1. Analysis was performed on polar data rather than 

transformation to Cartesian coordinates. One volume, consisting of scans at eleven tilt angles 

(spaced at 0.7, 1.5, 2.5, 3.5, 4.5, 5.5, 6.9, 9.2, 12.0, 15.6, 20.0 degrees) is completed in 

approximately five minutes. This radar was chosen for evaluation as it covers one of Australia’s 

major population centers and anaprop is a common occurrence in this location, especially 

during the summer months when the prevailing subtropical high in the Tasman Sea produces 

strong temperature and humidity gradients off the Australian eastern coast. 

Peak power (kW) 250 

Wavelength (cm) 5 

Pulse repetition frequency (Hz) 1000 

Pulse length (μs) 1.0 

Range resolution (m) 250 

Azimuthal sampling interval (°) 1 

Rotation rate (°/s) 17.2 

Table 1: Operating parameters for the Kurnell radar.
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4. BAYES CLUTTER CLASSIFIER 

In this work a Bayes classifier is implemented to distinguish anaprop from precipitation echoes. 

Bayes’ theorem (Gelman, 2004) relates the a posteriori probability of an object belonging to a 

particular class c  given a set of input observations nxx ,,1  and can be written as, 
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where ),,( 1 cxxP n  is the conditional probability distribution (likelihood) of returning a 

measurement xi given it belongs to class c;  cP  is the a priori probability of a given class and 

 nxxP ,,1   is the probability of obtaining a particular measurement for an input measurement 

ix . The denominator in Equation (3) is constant across all classes and therefore a constant of 

proportionality which can be ignored for calculations.  

In this work, we implement a version of Bayes’ theorem known as the naïve Bayes classifier, 

which makes the assumption that the input measurements ix  are conditionally independent 

which greatly simplifies the calculation of the likelihood term in Equation (3). Assuming 

independence of the input measurements the likelihood term in Equation (3) can be expanded as 

a multiplication of the individual conditional probabilities (Rico-Ramirez and Cluckie, 2008) so 

that, 

    


n

i in cxPcPxxcP
11 )()(,,  (4) 

In practice the independence assumption is often violated, however, the naïve Bayes classifier 

has been shown to be effective even when the independence assumption is known to be false 

(e.g. Friedman et al., 1997) The conditional probabilities are obtained from training datasets 

where the classification is known a priori. To obtain the a priori probability of a particular class 

occurring,  a climatological dataset could be used obtained to determine the probability of 

each class occurring at each location. However, this would induce biases unless the dataset was 

very large (in theory infinite) and instead, we make the assumption that each class is equally 

likely, i.e. 5.0)()(  ionprecipitatPAPP . In this instance we have defined only two 

classes, however, the number of classes could be extended, and in general, 

classesnocP i ./1)(  . Conceptually, the problem of classification reduces to calculation of 

the PDFs of the conditional probabilities for each class, while classification is determined by 

maximising the a posteriori probability. For our purposes, the vector, ix  corresponds to a 

sequence of feature fields which can be derived from the radar observations, while the class ic  

is one of anaprop or precipitation. We now turn our attention to the feature fields used as input 

to the naïve Bayes classifier. 
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4.1 Feature fields input to the Bayes classifier 

In this section we detail the feature fields used as input to the naïve Bayes classifier. The feature 

fields can be described as ‘texture-based’, which examine various bin-to-bin relationships in the 

retrieved radar fields. The use of feature fields obtained from reflectivity data is advantageous 

since they are numerically efficient to compute and can be implemented in post-processing 

capacity, rather than requiring upgrades to radar hardware or electronics on site. The three 

feature fields we will consider are; texture of reflectivity, spin and vertical profile of reflectivity. 

All of these are obtained from the corrected reflectivity transmitted as a standard field from all 

of the Bureau’s radars. 

4.1.1 Texture of reflectivity  

The texture of reflectivity (TDBZ) is a measure of the reflectivity difference between adjacent 

radial reflectivity bins. It is computed as (Hubbert et al., 2009; Kessinger et al., 2004), 
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where dBZ is the reflectivity measured in a range gate, N is the number of azimuthal radar 

beams and M is the number of radial range gates; the quantity NxM is referred to as the ‘kernel’. 

Texture of reflectivity is currently used in the United States WSR-88D network’s clutter 

mitigation decision algorithm (Hubbert et al., 2009; Kessinger et al., 2004). These formulations 

include only the radial component in the calculations, although others (e.g. Rico-Ramirez and 

Cluckie, 2008) include the azimuth in calculations. Here, we use a formulation similar to that of 

Hubbert et al. (2009), and average along a kernel of eleven radius gates (centred on the gate of 

interest) along a single azimuth ray (i.e. N = 1 and M = 11). Evaluation of TDBZ in only the 

radial component has several advantages: (1) it requires less computation time and memory 

usage; (2) the radar tends to inherently average or ‘smear’ over azimuths especially at the fast 

rotation rates ( ~ 17 °/s) used operationally and (3) for adjacent azimuths the distance between 

measurements increases linearly with range, so that TDBZ computed in 2D has range-

dependent properties. 

4.1.2 SPIN 

The SPIN feature field is a measure of the number of sign changes in the relative difference of 

reflectivity between adjacent reflectivity gates. The difference must be greater than a specified 

threshold (nominally 2 dBZ) and the result is expressed as a percentage of all possible 

fluctuations within a kernel mask (Steiner and Smith, 2002). For example, if Xi–1, Xi, and Xi+1 

represent three successive gates along a radar ray, each with an associated dBZ value, then in 

order for a SPIN change to occur, two conditions must be met: (1) there must be a sign change 

of reflectivity either side of a specified range gate and (2) the magnitude of the average 

difference between range gates preceding and following the range gate of interest must exceed a 

specified threshold. Mathematically, these conditions can be expressed as (Hubbert et al., 2009), 

    iiii dBZdBZsigndBZdBZsign   11  (6) 
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4.1.3 Vertical profile of reflectivity 

The vertical gradient of reflectivity measures the gate-to-gate difference of the reflectivity 

values between two elevation angles for the same range gate, 

 
lu dBZdBZVPDBZ   (7) 

where u  and l  represent the upper and lower elevation angles respectively. This field is 

particularly good at identifying anaprop echoes as they are normally confined to the lowest two-

to-three tilts. The Bureau’s post-processing clutter mitigation algorithm currently uses a 

measure of VPDBZ to censor echoes due to anaprop, however, it has the undesired effect of 

eliminating echoes from shallow stratiform precipitation. Kessinger (2004), used a range 

weighting function which varied between one and zero decreasing with increasing distance from 

the radar in an attempt to mitigate this problem. Since stratiform rain will have large VPDBZ 

values at long distances from the radar, the weighting function is an attempt to reduce these 

large values so as to not incorrectly identify stratiform rain as clutter. In the current formulation 

we have not applied a range weighting function, however, it will be shown later that the current 

form used for VPDBZ is sufficient when used within the framework of the naïve Bayes 

classifier. 

4.2 Construction of conditional PDFs from a training dataset 

Application of the naïve Bayes classifier requires evaluating PDFs of the a priori conditional 

probabilities for each class using training datasets. Since we are attempting to distinguish 

anaprop from precipitation we specify two classes c1,2, both of which require training data. Data 

representative of anaprop are presented in Fig. 1, the left hand side of which shows a plan 

position indicator (PPI) radar image obtained from the lowest elevation (0.7 degrees) of the 

Kurnell radar at 100 UTC 31 January 2011. The complete anaprop training dataset spanned the 

time period 0000–1400 UTC which consisted of 169 volume scans comprising over 5 million 

separate reflectivity returns (see Table 2). 

Meteorological type Time period (UTC) No. of volumes No. of dBZ samples 

Anaprop 0000–1400 169 5 089 099 

Sh strat 1420–2315 107 1 405 144 

Sh conv 0200–0500 37 664 291 

Convect 0230–0730 61 1 007 198 

Mixed 1430–2300 103 6 263 822 

Table 2: Summary of time periods, number of radar volumes and number of unique reflectivity samples 

used for the training dataset. 
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The eastern coast of Australia is indicated by the heavy black line and many returns can be seen 

emanating over the ocean. The reflectivity reaches magnitudes of 35–40 dBZ, values typical of 

returns from showers at this location. These returns however, are not from precipitation but 

anaprop. This is apparent on examination of the right-hand side of Fig. 1 which shows the 

range-height indicator (RHI) volume slice at an azimuth of 100° clockwise from north and 

reveals that returns were only present in the lowest two tilts of the volume scan. The shallow 

extent of the returns is a clear indication that they are from anaprop. However, there are 

occasions when heavy precipitation can occur from shallow stratiform clouds in this region; in 

such situations the vertical extent of reflectivity is not necessarily a good discriminator of 

anaprop and precipitation. Isolated returns (due to ‘clear-air’
4
 returns) were also noted to be 

present to the West of the radar, however, they are of a relatively low reflectivity and are mostly 

absent if a lower reflectivity threshold of 10 dBZ is applied. It was chosen to apply this 

threshold to all of the training datasets as 10 dBZ is a suitable minimum reflectivity which 

indicates the onset of precipitation-sized droplets (Knight and Miller, 1993). It is apparent that if 

the anaprop signals were assimilated the NWP model would attempt to create precipitation 

where none was present. The aim therefore, is to identify and remove echoes from anaprop. 

For construction of the conditional PDFs for the precipitation class, four separate precipitation 

scenarios were chosen: shallow stratiform (Sh strat) rain where cloud tops were below the 

freezing level and precipitation was most likely generated by warm rain processes; a line of 

shallow convection (Sh conv) with cloud tops below 5 km; deep, isolated continental 

convection (Conv) and widespread stratiform (Mixed) rain with embedded convective elements. 

The reasons for these choices were twofold: (1) to capture a wide variety of meteorological 

cases and (2) to increase sampling statistics. Radar images (PPIs) of each of the scenarios are 

shown in Fig. 7. A visual comparison of the PPIs for the anaprop and shallow convection case 

indicate that there is little information in the reflectivity field to distinguish them. Histograms of 

reflectivity (not shown) confirm this; in fact, there is little information in the reflectivity field 

(of a PPI) to distinguish each of the precipitation examples (except perhaps shallow stratiform 

rain) from anaprop. Therein lies the problem of automated detection of anaprop from the 

reflectivity field alone. 

                                                      

4
 Clear-air returns are returns measured when there are no meteorological targets (i.e. clouds/rain) 

present. They can be due to either (1) returns from birds, insects or (2) refractivity (humidity) gradients in 

the atmosphere, which is termed Bragg scattering. 
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Fig. 7: PPI radar reflectivity displays of the meteorological cases chosen for the training dataset. Clockwise 

from top left: squall line, widespread shallow stratiform rain, deep convection, widespread deep stratiform 

rain with embedded convection. 

 

More information can be gained from examining the feature fields TDBZ and SPIN, which are 

shown in Fig. 8 and Fig. 9, respectively. An absence of structure is apparent in the feature fields 

compared with reflectivity (i.e. low/large values of reflectivity do not translate to low/large 

values of TDBZ or SPIN). Again, the feature fields are relatively homogeneous for all the 

meteorological conditions and furthermore relatively homogenous through strong gradients in 

reflectivity. On the other hand, Fig. 10 shows the feature fields for the anaprop case presented in 

Fig. 1. Again, there is a lack of structure compared to the reflectivity field however, when 

compared with the feature field images presented in Fig. 8 and Fig. 9, it is evident that both 

texture and SPIN are skewed to larger values for anaprop than for the meteorological events, 

regardless of the type of rain-bearing clouds. These observations suggest that TDBZ and SPIN 

are quite different for anaprop and precipitation while independent of the meteorology 

producing precipitation. 
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The figures show a single snapshot in time, representative of the meteorological conditions, 

however, for the purposes of constructing the conditional PDFs, time periods were chosen 

where the weather scenarios exemplified in Fig. 7 were applicable throughout. These periods 

were chosen subjectively by examining sequences of radar images and choosing a subset of 

contiguous retrievals such that the precipitation was similar (in the sense of areal extent and 

type) in each volume throughout the interval. Combined the precipitation samples consisted of 

308 volumes comprising over 9 million samples (see Table 2). 

 Histograms of the feature fields were then constructed, for each of the weather scenarios and 

for anaprop. They are shown in Fig. 11 and represent the conditional probabilities on the rhs of 

Equation (4). Two observations are apparent; (1) the PDFs of the weather and anaprop 

scenarios are distinct and (2) the PDFs for each weather scenario are approximately equal. In 

particular, the PDF of TDBZ indicates that anaprop is much more likely to have TDBZ greater 

than 20 (note the logarithmic scale on the axes); SPIN values larger than about 20 per cent are 

most likely associated with anaprop while SPIN values less than 20 per cent are more likely to 

be from weather returns. Similarly, VPDBZ values greater than 10 are more likely to be from 

anaprop. Also the PDF of VPDBZ is symmetric around zero for all of the weather cases while it 

is centred near 20 for anaprop. Since the PDFs for anaprop and weather are quite separate it 

gives us confidence that their implementation in Equation (4) will provide a sufficient degree of 

distinguishability to enable correct classification. 
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Fig. 8: The texture feature field (TDBZ) corresponding to the images shown in Fig. 7. 
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Fig. 9: The SPIN feature field corresponding to the images shown in Fig. 7. 
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Fig. 10: (Left) The TDBZ feature field and (Right) the SPIN feature field for the anaprop case presented in 

Fig. 1. 

 

Fig. 11: Probability distribution functions of the feature fields, TDBZ, SPIN and VPDBZ. PDFs are shown 

for each of the meteorological situations and for anaprop. These PDFs represent the likelihood function in 

Bayes formula (Equation (4)). Note the logarithmic axes for TDBZ.
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4.3 Transformation of the conditional PDFs 

The conditional PDFs as shown in the above section could be used for the naïve Bayes classifier 

but their implementation would require the use of a look-up table. For instance, the feature 

fields could be evaluated and a probability determined (via the look-up table) of that 

measurement occurring based on whether the classification was that of anaprop or precipitation. 

For operational purposes, this is unfeasible due to computational limitations. To facilitate 

implementation of the classifier in an operational setting, it would be beneficial if the 

conditional probability distributions presented in Fig. 11 were parameterised by a mathematical 

function. For instance, if the PDFs were described by a Gaussian distribution then they could be 

completely described by the mean and standard deviation requiring minimal computation. To 

this end, power transforms of the conditional PDFs, provide a possible technique to make the 

data more normal distribution-like. There are many possible transforms but one which is well-

established within the statistical literature is that of the Box–Cox transformation. It provides a 

transform which transforms data to a Gaussian or normal distribution. The Box–Cox 

transformation is, 
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where y is a measured variable and   is the transformation parameter. The value of   is 

determined by maximising the logarithm of the likelihood function (Wilks, 2011),  
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where )(y is the arithmetic mean of the data. In this case, y corresponds to a vector of 

observations  321 ,, yyyy 


 where the elements of the vector are given by the feature fields. 

The PDF for VPDBZ is approximately normal (see Fig. 11) and so the transformation was only 

applied to the TDBZ and SPIN feature fields. 

The log-likelihood function for the TDBZ and SPIN feature fields were evaluated and the 

calculations for the TDBZ field of anaprop are shown in Fig. 12. The maximum of this 

parabolic function provides the optimal value of   for insertion to Equation (8) so as to 

transform the PDFs shown in Fig. 11 to approximately normal distributions. Similar 

calculations were performed for all meteorological scenarios and each feature field. The results 

are summarised in Table 3. Since it is not known a priori what the prevailing meteorology is, an 

average value applicable to all precipitation cases weather , was evaluated. These values are listed 

in the rhs column of Table 3 and were used to transform the conditional PDFs of Fig. 11 via 

Equation (8). 
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Fig. 12: The log-likelihood as a function of λ (see Equation (9)). The value of λ which maximizes the log-

likelihood function provides the best value to transform the data to an approximately normal distribution via 

Equation (8)). The dotted lines represent the 95 per cent confidence interval for λ. This curve is the log-

likelihood function evaluated for the TDBZ field of the anaprop case. Values for TDBZ and SPIN for each 

case are presented in Table 3. 

 

 Anaprop Sh strat Sh conv Convect Mixed 
ionprecipitat  

TDBZ –0.11 –0.34 –0.2 –0.22 –0.24 –0.25 

SPIN 0.3 0.25 0.25 0.26 0.29 0.26 

Table 3: Calculated values of λ for the Box–Cox transformation described by Equation (8) for anaprop and 

each of the precipitation cases. The last column shows the average value of λ for all precipitation cases 

combined. 

 

The resulting transformed PDFs are shown in Fig. 13. As was found prior to application of the 

Box–Cox transformation, the PDFs are approximately equal for all precipitation scenarios and 

they are distinct from anaprop for both TDBZ and SPIN. It is also noted that the Box–Cox 

transformation has been successful at transforming the PDFs to approximately normal 
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distributions. The original TDBZ and SPIN fields were re-evaluated from the training dataset 

and the Box–Cox transformation applied to it. The mean (μ) and unbiased estimate of the 

standard deviation (σ) of the data were then evaluated via a two-pass algorithm, 
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Fig. 13: Probability distribution functions of the feature fields TDBZ and SPIN after transformation 

according to the Box–Cox power law given by Equation (8). Note that the distributions are now 

approximately normal. 

These values summarized in Table 4. The Gaussian distributions described by these two 

parameters were calculated and are plotted in Fig. 14, and overlaid with the histograms of Fig. 

13. The Gaussian distributions calculated directly from the mean and unbiased estimate of the 

standard deviation of the data very closely overlay the PDFs of the original data and therefore, 

to a close approximation, the conditional PDFs can be parameterized via the mean and unbiased 

estimate of the standard deviation of the Box–Cox transformation of the respective feature 

fields. We label these feature fields BCTDBZ and BCSPIN. 

 Anaprop Precipitation 

μ σ μ σ 

BCTDBZ 2.6 0.62 1.69 0.45 

BCSPIN 5.96 1.42 4.71 1.24 

VPDBZ 16.69 8.49 0.74 5.30 

Table 4: Mean (μ) and unbiased estimate of the standard deviation (σ) of the feature fields for anaprop and 

precipitation. The values in the precipitation column are an average of each of the precipitation scenarios. 
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They were obtained by applying the Box–Cox transformation to the feature fields of the training data and 

then computing μ and σ of the transformed distribution. 

 

Fig. 14: Same as Fig. 13 including the best-fit normal curves determined from the mean and unbiased 

estimate of the standard deviation of the Box–Cox transformed training datasets. 

4.4 Independence of the feature fields 

The linear independence of the input feature fields is one of the key assumptions of the NBC. 

Despite this assumption it has been proven to be effective even when the assumption of 

independence is violated (e.g. Friedman et al., 1997). However, it is worthwhile to examine the 

independence assumption between each of the feature fields. Scatter plots of each combination 

of the transformed feature fields are shown in Fig. 15, and it can be seen that there is some 

degree of correlation between each of the feature fields. 

 

Fig. 15: Scatter plots of each of the Box–Cox transformed variables. Values for precipitation are shown in 

grey while anaprop values are in black. As for Fig. 14, the values for anaprop are separated from those for 

precipitation. 

To quantify the magnitude of the correlation, Pearson’s correlation coefficients were calculated 

for each combination of the original and Box–Cox transformed feature fields. The results are 

summarised in Table 5. The VPDBZ field is either uncorrelated or very weakly correlated with 
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TDBZ and SPIN; the same is true for the Box–Cox transformed counterparts BCTDBZ and 

BCSPIN. This may be expected as TDBZ and SPIN are measures of fluctuations of the 

reflectivity in a horizontal plane, while VPDBZ measures fluctuations in the vertical plane. 

However, the correlation coefficient for TDBZ and SPIN indicates a modest correlation (0.36) 

and a slightly greater correlation (0.48) after transformation. The correlation between TDBZ 

and SPIN is most likely due to each of them quantifying the fluctuation of the reflectivity field. 

The increased correlation between TDBZ and SPIN after transformation (for both anaprop and 

precipitation) is most likely due to the decreased range of the variables after transformation. For 

example, SPIN has values in the range [0,100] whereas BCSPIN is in the range [2,9]. Moreover, 

the Box–Cox transformation reduces larger values by a greater proportional amount than 

smaller values, thereby increasing the covariance of a feature field (Wilks, 2011). 

 

 
Anaprop Sh strat Sh conv Convect Mixed 

TDBZ–SPIN 0.36 0.36 0.37 0.28 0.46 

TDBZ–VPDBZ –0.01 0.03 –0.15 –0.05 –0.1 

SPIN–VPDBZ 0.02 –0.03 –0.09 –0.02 –0.06 

BCTDBZ–BCSPIN 0.48 0.46 0.49 0.42 0.53 

BCTDBZ–VPDBZ 0.15 0.04 –0.13 –0.06 –0.0 

BCSPIN–VPDBZ 0.05 –0.03 –0.08 –0.01 –0.05 

Table 5: Pearson coefficient of correlation for anaprop conditions and the differing precipitation cases. All 

possible coefficients are shown for the original feature fields (TDBZ, SPIN and VPDBZ) and the Box–Cox 

transformed values (BCTDBZ, BCSPIN and VPDBZ). 
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5. RESULTS 

5.1 Varying input feature fields on the training dataset 

It was stated in section 4 that the naïve Bayes classifier (NBC) implicitly assumes independence 

of the input feature fields, however a modest degree of correlation between TDBZ and SPIN 

was demonstrated in section 4.4. In this section we examine how the NBC performs using 

differing combinations of the feature fields and determine if the correlation between TDBZ and 

SPIN affects the predictive power of the NBC. To illustrate this, we investigated all possible 

combinations of TDBZ, SPIN and VPDBZ as input feature fields to the NBC (BCTDBZ, 

BCSPIN, VPDBZ, BCTDBZ–BCSPIN, TDBZ–VPDBZ, SPIN–VPDBZ and TDBZ–SPIN–

VPDBZ) and applied them to the case presented in Fig. 1 (which was representative of the 

training dataset for anaprop). A visual inspection was made to determine the least and most 

effective combinations which are shown in Fig. 16. Returns classified as precipitation are 

coloured blue while those from anaprop as orange. The use of BCTDBZ alone proved the least 

effective while the BCTDBZ–VPDBZ combination proved to the most effective classifier of 

anaprop. In general, VPDBZ had the greatest discriminatory power (combined with BCTDBZ 

or BCSPIN) for anaprop and was even quite effective if used as the sole feature field. The use 

of either BCTDBZ or BCSPIN alone was least effective since many range gates which were 

anaprop were misclassified as precipitation. Including all three feature fields resulted in only a 

marginal improvement over using either BCTDBZ or BCSPIN combined with VPDBZ. 

 

Fig. 16: The results of the naïve Bayes classifier (NBC) applied to the anaprop training dataset presented 

in Fig. 1. The image on the left was obtained using BCTDBZ only for classification, while the image on the 

right used BCTDBZ and VPDBZ. 

The possible NBC feature field combinations were evaluated using the precipitation cases from 

the training dataset. In all cases, the TDBZ–VPDBZ combination obtained similar results to the 

application of all three feature fields, while the SPIN–VPDBZ combination performed poorly. 

The addition of the SPIN feature field may not have enhanced the efficacy of the NBC due to 

the independence assumption of TDBZ and SPIN being violated. That the SPIN–VPDBZ 

combination performed worse than the TDBZ–VPDBZ combination may be due to Equations. 
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(5) and (6) being evaluated in only the radial direction. A kernel size of 20 was chosen, so as to 

allow a sufficient dynamic range in the evaluation of the SPIN (a kernel size of 20 will give a 

minimum discrete interval of 5 per cent in the evaluation of SPIN). However, a kernel size of 20 

equates to a radial range of 5 km, which may have the unintended consequence of smearing 

over precipitation and non-precipitation pixels. The inclusion of azimuths in the evaluation of 

SPIN, which will enable the kernel size to be kept the same while decreasing the radial extent, 

is needed to evaluate the effectiveness of evaluating SPIN in one dimension only. Despite this, 

it appeared that using TDBZ and VPDBZ gave similar results to the application of all three 

feature fields and for this reason the BCTDBZ–VPDBZ combination will be used to present the 

NBC results herein. 

The image which was transmitted for public display by the Bureau corresponding to the anaprop 

presented in Fig. 1 is shown in the left-hand side of Fig. 17. The NBC provides a substantial 

improvement over the current clutter mitigation system employed at the Bureau, which uses 

basic thresholds of reflectivity and vertical height to censor data. However, in the image shown, 

the reflectivity and height thresholds were exceeded allowing incorrect radar returns to be 

included. The problem becomes more pronounced at greater distances from the radar because 

beam propagation causes the beam to be above the minimum height threshold once a certain 

range is reached. 

 

Fig. 17: Images transmitted for public display using the Bureau’s current clutter mitigation system. The 

images correspond to the anaprop data presented in Fig. 1 and the shallow stratiform case presented in 

Fig. 7. It can be seen that the current system is ineffective at removing anaprop, especially far from the 

radar, while it also removes many genuine precipitation pixels, especially close to the radar. 

  

 



 

28     A Bayesian methodology for detecting anomalous propagation in radar reflectivity observations 
 

5.2 Verification of the classifier 

After conducting a visual evaluation of the best combination of feature fields to input to the 

NBC the performance of the NBC was quantified. To achieve this we applied the NBC to each 

of the training datasets, which we assumed a priori consisted entirely of either anaprop or 

precipitation samples. These data were used to construct the conditional probability PDFs (see 

Fig. 11, Fig. 13 and Fig. 14), therefore, if the NBC was perfect, would classify each pixel 

correctly. The total number of pixels classified as either anaprop or precipitation was calculated 

for each of the training datasets and the results are presented as a contingency table in Table 6. 

The numbers differ from those in Table 2 because all of the pixels in a volume were used to 

construct the contingency table, while only those from the lowest tilt were used to train the 

NBC. The raw values are presented above and the proportional values below in parentheses. 

There are many different ‘skill scores’ which can be derived from the contingency table; 

however, the dimensionality of the table is three and all the information contained in it can be 

summarized with three statistics (Wilks, 2011). Three which are commonly used are the hit rate 

(  caaH  ), the false alarm rate (  dbbF  ) and the base rate (  cP  – or sample 

climatological relative frequency) of the class in question. Each of these scalar attributes can be 

quoted for each class (i.e. anaprop or precipitation) but we will quote only the values for 

anaprop: H = 0.981, F = 0.098, P(c) = 0.095. This means that about 98 per cent of anaprop 

pixels were correctly detected and about ten per cent of the precipitation pixels were 

misclassified as anaprop. The sample climatological relative frequency of anaprop was about 

ten per cent, which is probably substantially larger than the actual climatological frequency of 

anaprop. In other words, the NBC is very good (98 per cent) at classifying anaprop correctly 

however, ten per cent of the time it incorrectly classifies a precipitation pixel as anaprop. For 

the purposes of QPE or NWP assimilation this is a more desirable characteristic than the 

opposite (i.e. misclassifying ten per cent of anaprop as precipitation). 
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 Anaprop Precip. Marginal Totals 

(forecasts) 

Anaprop 6 267 195 

(0.047) 

5 927 313 

(0.044) 

12 194 508 

(0.091) 

Precip. 120 005 

(9×10
–4

) 

54 680 422 

(0.410) 

54 800 427 

(0.410) 

Marginal totals 

(observed) 

6 387 200 

(0.048) 

60 607 735 

(0.452) 

Total no. samples 

133 989 870 

Table 6: Contingency table constructed from the anaprop and precipitation training datasets. A minimum 

reflectivity threshold of 10 dBZ was applied. 
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5.3 Application to the training dataset precipitation cases 

The results of applying the NBC to the precipitation cases, using the BCTDBZ–VPDBZ feature 

fields as discriminators, are shown in Fig. 18. For the shallow stratocumulus case (top left) the 

NBC has identified most (~70 per cent) reflectivities larger than about 15 dBZ as precipitation. 

The formation of precipitation-sized droplets is indicated at radar reflectivities of about 5–10 

dBZ for a C-band radar (Knight and Miller, 1993), so the NBC has been particularly effective at 

identifying the shallow precipitation bands within these stratocumulus. We also note that the 

current method employed at the Bureau to eliminate anaprop, which relies solely on examining 

the vertical profile of reflectivity, rejected these echoes in near entirety as anaprop (see right-

hand side of Fig. 17). This was because the precipitation was mainly confined below the height 

threshold designed to eliminate anaprop. The NBC represents a substantial improvement for the 

identification of shallow precipitation, which will improve QPE calculations. Shallow cumulus 

convection is also well distinguished however, some precipitation echoes, especially those at the 

edge of the radar volume, have been incorrectly classified as anaprop. This is due to the spread 

of the radar beam with distance and the use of VPDBZ as a classifier. In this case cloud top 

height was between 4–5 km and at large distances from the radar, two vertically-aligned range 

gates were sufficiently large to overshoot cloud top, resulting in a large VPDBZ value, typical 

of anaprop (see Fig. 11). We note that the NBC using BCTDBZ only as the input feature field 

identified all of the returns as precipitation suggesting that, in the case of shallow precipitation, 

the use of BCTDBZ alone may perform better. The inclusion of BCSPIN degraded the 

performance of the NBC. However, since it is not known a priori what the source of returns is 

and the NBC cannot adapt its input feature fields accordingly, the use of the most effective 

combination over all precipitation types (BCTDBZ–VPDBZ) is preferable. The classification of 

the deeper precipitation, whether stratus or convective in nature (Convect and Mixed), has been 

partially (88 per cent and 94 per cent, respectively) successful and is acceptable for the purposes 

of data assimilation or QPE/QPF. Given that the current numerical weather prediction model 

used at the Bureau —the Australian Community Earth Climate System Simulator (ACCESS) 

(Puri et al., 2012)— has a grid spacing of 5 km, the raw radar reflectivity needs to be thinned 

(using ‘superobservations’) so this accuracy is most likely suitable for data assimilation or 

QPE/QPF (Weng and Zhang, 2011), although this requires further investigation 
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Fig. 18: The results of the NBC applied to the precipitation cases from the training dataset. The original 

reflectivity images are shown in Fig. 7. 

5.4 Application to a case of rain embedded in anaprop 

We now evaluate the NBC on a case other than the training dataset. Consider Fig. 19, which is a 

particularly interesting example as the image contains returns from both anaprop and 

precipitation. The returns in the northeast quadrant of the image are from anaprop while those in 

the southeast are from convective storms. This becomes apparent when examining the PPI 

obtained at the second radar elevation (top right), where the returns originating from anaprop 

have disappeared as the radar beam is no longer internally reflected at the temperature and 

humidity inversion. This is further emphasized when the RHIs at 40° and 112° are examined; 

the RHI at 40° only has returns in the lowest elevation, while the RHI at 112° indicates the 

presence of a well-developed convective storm containing reflectivities greater than 25 dBZ 

extending above 7 km. The simultaneous presence of both anaprop and precipitation in the same 

image provides a useful example with which to evaluate the efficacy of the NBC. 
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Fig. 20 shows the results of applying the NBC to this scene using BCTDBZ and VPDBZ as 

input feature fields. The PPI images (top row) show that the NBC is effective at distinguishing 

anaprop from precipitation, however, some precipitation pixels have been misclassified as 

anaprop. This is further illustrated by the RHI images (bottom row), again at 40° and 112° 

which indicate that while the NBC has positively identified anaprop some precipitation signals 

have been misclassified. 

 

Fig. 19: An example of anaprop and a convective storm obtained from the Kurnell radar on 22 January 

2010. Anaprop is present in the northeast and a convective storm in the southeast. The top left panel is a 

PPI image obtained at the lowest elevation (0.7°), while the top right panel was obtained at the next 

highest elevation (1.5°). Note the absence of anaprop in the higher elevation. The bottom left panel is an 

RHI obtained at an azimuth of 40° through the anaprop, while the lower right panel is an RHI at 112° and 

shows the presence of a convective system extending to nearly 10 km height. The azimuths of the RHIs 

are indicated by the black line in the PPIs. 
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Fig. 20: The results of the NBC applied to Fig. 19 using BCTDBZ and VPDBZ as input feature fields. The 

NBC has classified the anaprop correctly, completely eliminating the returns in the northeast, however, 

some pixels which are returns from precipitation have been incorrectly classified as clutter. 

5.5 The effect of the reflectivity threshold 

For the preceding analysis, the minimum reflectivity threshold used (for evaluation of the 

feature fields, their conditional PDFs and for classification) was 10 dBZ, which is slightly above 

the value one would expect for the initiation of precipitation-sized droplets which Knight and 

Miller (1993) determined to be about 5 dBZ for a C-band radar. If values below this are 

included, then clear-air returns from insects and Bragg scattering from humidity gradients in the 

atmosphere become enhanced. The effect of setting a minimum reflectivity threshold at –30 

dBZ (the smallest value returned by the radar) is shown in the left panel of Fig. 20. There is an 

increased number of returns close by the radar, especially over land, most likely due to the 

presence of insects and Bragg scattering. Conditions conducive to Bragg scattering would be 

expected since the same temperature and humidity gradient which produced anaprop over the 

sea would be prevalent, although to a lesser extent, over land. Despite the extra returns when the 

reflectivity threshold is lowered, the NBC did not classify most of the extra returns as 

precipitation. Since no data below 10 dBZ were used in the development of the NBC it is 

interesting that most of the clear-air echoes have been classified as anaprop. Examination of a 

time sequence of images revealed that the echoes over land close to the radar (corresponding to 

those classified as precipitation) were due to Bragg scattering while those further away 

(classified as anaprop) were caused by insects present after sunset. The NBC may therefore also 

prove useful in identifying insects and boundary layer humidity gradients however, this will 

require further investigation. Nevertheless, for the purposes of data assimilation and QPE, 
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setting a reflectivity threshold near 10 dBZ is advisable and mitigates this problem. However, 

the use of the Doppler wind field (e.g.Rennie et al., 2010) is advisable to identify insect echoes 

and such research is being undertaken concurrently at the Bureau. Furthermore, software is 

being developed within the Bureau which will enable selecting regions of interest, and 

subjectively defining an a priori class to them to determine if and how PDFs of feature fields 

for insects (for instance) differ from those of anaprop. 

 

 

Fig. 21: (left) PPI image of mixed anaprop and precipitation using a minimum reflectivity threshold of −30 

dBZ. Note the increase in returns over land close to the radar compared to Fig. 19. These returns were 

most likely due to Bragg scattering. (right) Results of the NBC using −30 dBZ as the minimum reflectivity 

threshold. 

5.6 Application to radars other than Kurnell 

It is feasible that the texture and SPIN variables may be sensitive to radar operating 

characteristics such as wavelength and beamwidth. The Kurnell radar is ideally situated to test 

this hypothesis as two Bureau radars are located to the north and south of it each with differing 

operating characteristics. The Terrey Hills radar is an S-band (10 cm), 1° beamwidth radar 

located about 40 km to the north of the Kurnell radar, while the Wollongong radar is an S-band, 

2° beamwidth radar located about 55 km to the south. Comprised, the radars are a combination 

of 5 and 10 cm wavelength and 1 and 2 degree beamwidth operating parameters. 

Fig. 22 is an example of shallow convection and anaprop observed by each of the radars at 

approximately the same time. The same gross features are evident with many convective 

elements present over the ocean. The convection was very shallow and confined mostly below 4 

km altitude. Consider the small convective element just east of the Kurnell radar which is 

circled. It is clearly visible in all three radars; however, more anaprop is evident in the Kurnell 

and Wollongong radar images. Fig. 23 shows the results of applying the NBC to the PPIs. It can 

be seen that the anaprop surrounding the convection in the Kurnell and Wollongong images has 

been correctly distinguished. It is encouraging that the NBC has managed to perform well when 
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applied to radars with different operating characteristics, and gives us confidence that the NBC 

can be directly applied to other radars around the country. 

It is unclear why more anaprop is present in the Kurnell and Wollongong radars compared to 

Terry Hills. It may be due to the altitude of the radar, however, Terry Hills is at an altitude 

midway between the other two indicating no obvious decrease in anaprop as a function of 

height of the radar as may be expected. The radar beamwidth may be a contributing factor since 

Wollongong (with a 2° beamwidth) exhibits a greater amount of anaprop compared with the 

other two radars. In particular, tests of the NBC on radars at other locations around Australia 

reveal that the feature fields may be susceptible to beamwidth and range resolution. Another 

factor which may influence the NBC, however, may be the climatic region for which it was 

tuned i.e. it may not perform so well in the tropical north of the country or in the temperate 

regions further south. This point needs further examination and will be the focus of future 

studies. 

 

Fig. 22: An example of anaprop and shallow maritime cumulus convection observed from three separate 

radars: Terrey Hills, Kurnell and Wollongong) each with different operating characteristics. 

 

Fig. 23: The NBC applied to the PPIs from Fig. 22 
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5.7 A strength of classification index 

The NBC has proven successful in distinguishing anaprop from precipitation and would be a 

useful tool for an operational forecaster or for the layperson viewing publicly available radar 

images. However, for the purposes of assimilation or QPE/QPF it would prove beneficial to 

have some knowledge of the confidence one has in data being precipitation. This could take the 

form of an absolute probability by evaluating the a priori probability for each class )(cP , 

however, as detailed in section 4 that would require a climatological dataset to determine )(cP  

for each bin in the radar volume, which is contrary to the efficiency inherent in using the NBC. 

To this end, we constructed a ‘strength of classification’ index (SOC). The SOC is a measure of 

the relative proportion by which the conditional probability (the left-hand side of Equation (4)) 

of precipitation exceeds that of anaprop as a proportion of the maximum possible difference 

after both of the posterior probabilities have been scaled to be in the range [0, 1]. 

Mathematically this is expressed as, 
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The SOC therefore scales in the range [–1, 1], where 0 indicates that the likelihood of 

precipitation and anaprop is equal, and 1 indicates that the likelihood of anaprop was zero and 

for precipitation was a maximum (which is unity after scaling). The sign of this number is 

determined by the order of the terms in Equation (11) and an equivalent index could be 

constructed for anaprop. In practice, if a pixel has been identified as anaprop then it is discarded 

as we are interested only in the SOC for precipitation, i.e values in the range [0,1]. 

An example of the evaluation of the SOC applied to the precipitation training datasets is shown 

in Fig. 24. The colour scale has been truncated at 0.5 as most values appear to be confined 

below this. To quantify the range of the SOC, PDFs of the training set data were constructed 

and are presented in Fig. 25. The SOC index is mainly confined to values below about 0.5. The 

PDFs of SOC exhibit a maximum at the first bin (0–0.05) showing that the majority of pixels 

identified as precipitation have only had a slightly higher posterior probability of precipitation 

than anaprop. However, the PDFs for each of the weather cases are relatively flat above an SOC 

of about 0.05. It is anticipated that the assimilation and QPE communities would be able to set a 

minimum value of the SOC, above which data pixels would be accepted. Of course, increasing 

the SOC results in a decrease in the amount of information that can be assimilated, however, the 

flatness of the PDFs in Fig. 25 suggest that the information loss is approximately linear above 

an SOC threshold of about 0.05. 
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Fig. 24: The ‘strength of classification’ index evaluated for each of the precipitation cases from the training 

dataset. A larger value indicates a larger confidence that a pixel is precipitation. 
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Fig. 25: SOC index PDFs evaluated for each of the precipitation training datasets. Theoretically the SOC 

can have a maximum value of one; however, the majority of values are confined below 0.5.
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6. SUMMARY AND CONCLUSIONS 

In this study a naïve Bayes classifier (NBC) was developed and tested. The NBC is an extension 

of Bayes’ theorem which classifies radar echoes into two classes, 21  and cc , based on a series of 

feature vectors, nxx ,,1  , by maximizing the a posteriori probability )( ii xcp . The classes were 

designated to be either anomalous propagation (anaprop) or precipitation and the feature fields 

investigated were texture of reflectivity (TDBZ), spin change variable (SPIN) (Steiner and 

Smith, 2002) and vertical profile of reflectivity (VPDBZ). 

The NBC is a supervised learning technique, which requires a training dataset of examples in 

which the classification is known a priori. The training dataset consisted of five subclasses—

one of anaprop and four distinct precipitation regimes; shallow stratiform, shallow convection, 

deep convection and deep stratiform precipitation with embedded convection. Probability 

distribution functions (PDFs) of the feature fields were evaluated for anaprop and each of the 

precipitation subclasses. The PDFs of the precipitation subclasses were found to be similar 

despite distinct meteorological forcing mechanisms. Moreover, the PDFs of the feature fields 

for anaprop were distinct from the PDFs of the precipitation subclasses, suggesting that they 

convey information which allows categorisation of precipitation and anaprop. 

The feature field PDFs were found to be non-normal which, if used in their native form, would 

require the use of look-up tables to evaluate the conditional probability in Bayes’ theorem. To 

parameterise the conditional PDFs they were transformed to approximately normal distributions 

via a Box–Cox transformation, which allowed them to be specified completely via the mean and 

standard deviation.  

All (seven) possible combinations of the feature fields were investigated on the training datasets 

to evaluate the most effective combination, which was found to be TDBZ and VPDBZ. The use 

of all three feature fields did not, as a rule, add any benefit to the NBC and in some cases caused 

it to perform worse. This was attributed to TDBZ and SPIN not being linearly independent as 

they are both measures of the variability of the reflectivity field. When considered individually, 

VPDBZ was found to be the most effective feature field at distinguishing anaprop from 

precipitation. 

The NBC was then applied to an independent case where precipitation and anaprop were 

present in the same region. The BCTDBZ–VPDBZ combination of feature fields proved most 

effective at classifying pixels correctly. Some pixels were incorrectly classified, but given the 

current data resolution required for purposes of data assimilation or QPE these errors were 

considered minimal. Some sensitivity to the reflectivity threshold was found, whereby returns 

from clear air appeared as the threshold was decreased. However, when the threshold was set at 

a reasonable level to distinguish most clear-air returns from the smallest precipitation-sized 

drops, (around 5 dBZ for a C-band radar) this problem was circumvented. The NBC however, 

shows some promise in being able to distinguish Bragg echoes from insect echoes. Furthermore, 

the NBC performed well when applied to the Terrey Hills and Wollongong radars, which means 

that the PDFs of texture and SPIN feature fields are most likely independent of radar operating 

parameters such as wavelength and beamwidth. However, the NBC was not tested on radars in 

differing climatic zones which will be the subject of future research. 
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The NBC was extended via a ‘strength of classification’ index (SOC), which was constructed as 

a measure of the confidence with which a pixel was classified as precipitation. It was 

formulated as the difference of the scaled (to be in the range [0, 1]) a posteriori probabilities of 

weather and anaprop expressed as a proportion of the maximum possible difference. Formulated 

in this way, the SOC has a range [–1, 1], however since we are only interested in determining 

the confidence we have in identifying precipitation pixels, negative values (which correspond to 

anaprop) are discarded so the SOC is in the range [0,1]. In practice, however it was found that 

the SOC was confined to values below about 0.5. The PDF of SOC exhibited relatively constant 

values in the range [0.05, 0.5]. The SOC can be used to remove data below a specified threshold 

before processing in applications such as assimilation or QPE. Due to the relatively constant 

values of the PDF of SOC, increasing the SOC threshold in the range [0.05, 05] will result in an 

approximately linear decrease in the amount of accepted data. 

The use of a NBC was found to be an effective method of distinguishing anaprop from 

precipitation. It should also be noted that it was effective using only a few derived feature fields 

and single polarisation data. This makes it useful for the Bureau’s radar network which 

currently consists of single polarised radars, a few of which have Doppler capability. At present, 

only corrected reflectivity and Doppler velocity are transmitted from the radar, however, plans 

exist to extend this to include spectrum width and uncorrected reflectivity. The inclusion of 

these variables and their associated feature fields should improve the capability of the NBC. At 

present, no dual-polarized radars exist in the Bureau’s operational network, however, the 

extension of the NBC to include polarimetric variables could be readily accomplished. The 

Bureau now owns the CP2 dual-polarimetric research radar (previously owned by NCAR) so 

we plan to investigate the use of the NBC with polarimetric variables in the future. 
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