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ABSTRACT 

Multiweek-seasonal climate forecasts are currently provided by the POAMA2 coupled forecast 
system (Hudson et al. 2013). This system, while providing skilful and useful predictions of 
many aspects of the climate, has many limitations for application to water resource 
management, including relatively low spatial resolution (~250 km grid) and simplistic treatment 
of the land surface. The POAMA system is in the process of being updated to the ACCESS 
coupled model, which will be a significant step forward for the POAMA system. The 
development of a multi-week to seasonal prediction capability based on ACCESS will require 
significant system development, including a new coupled atmosphere-ocean data assimilation 
system, appropriate initialization procedures, effective ensemble generation strategies, and 
optimal configuration of the ACCESS component models. As a contribution to these efforts, the 
WIRADA project on “Improving Multiweek Rainfall Forecasts” supported the initial 
experiments for forecasting at multiweek lead times using prototype versions of the ACCESS 
model. Although the ACCESS model has been extensively tested and tuned for making multi-
year climate simulations, its performance and optimal configuration for shorter lead-time, 
initialized climate predictions has yet to be determined. The multiweek lead time for this project 
was targeted both because it is a high priority growth area for water resource management but 
also for economy: much can be learned about the performance of the seasonal prediction system 
by the performance in the first month and with uncoupled (cheaper) versions of the model.   

Multi-week prediction of rainfall (or multi-week prediction of climate) sits in between short 
timescale NWP and long timescale seasonal prediction. At multi-week lead times, regional 
rainfall prediction derives from the ability to predict the large-scale, slowly varying circulation 
that involves both uncoupled atmospheric variability (tropical and extra-tropical) and coupling 
of the atmosphere with the tropical oceans. Multi-week prediction ultimately will require use of 
a coupled forecast model, initialized with concomitant ocean initial conditions and also high 
quality atmospheric initial conditions. However, while the new coupled atmosphere-ocean data 
assimilation systems are being developed, much can be learned about optimal model 
configuration and expected performance gains compared to POAMA2 by using uncoupled 
versions of ACCESS and coupled versions with simplified ocean-atmosphere initialization.    

We describe the various versions of the ACCESS uncoupled and coupled models and the initial 
conditions in Section 2. Comparison of forecast skill for month 1 (days 0-30) between the 
versions of ACCESS and POAMA M24 is presented in Section 3. Implications and 
recommendation for POAMA3, which will be based on ACCESS, are provided in Section 4. 

1. ACCESS MODEL FEATURES AND INITIAL CONDITIONS 

The ACCESS coupled model is based on the UKMO Unified Model (UM) atmospheric model, 
the MOM4 ocean model, and the CABLE land surface model. For implementation in 
multiweek-seasonal prediction, the initial effort here employed the configurations of the 
component models as for the ACCESS 1.3 climate model. Compared to POAMA M24, this 
includes:  
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 significant new atmospheric physics, in particular the PC2 cloud scheme (Wilson et al. 
2008); 

 higher resolution for the atmosphere model (horizontal resolution of 1.25° latitude by 
1.875° longitude, and 38 levels in the vertical; referred to as N96L38) compared to 
POAMA2 (approximately 2.5° by 2.5° for horizontal, L17 for vertical resolution, 
referred to as T47L17);  

 CABLE land surface model consists of a comprehensive description of the surface 
processes that calculate momentum, heat, water and carbon fluxes (Kowalczyk et al. 
2006, Wang et al. 2011). It also has 13 surface tile types (ten vegetated and three non-
vegetated tile types). In contrast, POAMA2 uses a simple bucket model;  

 higher resolution for the ocean model. The ACCESS ocean model has 360 longitude by 
300 latitude points on a logically rectangular matrix with 50 vertical levels (0-6000m). 
The POAMA2 ocean model has 180 longitude by 196 latitude points and with 25 
vertical levels (0-5000m);    

 the LANL CICE4.1 sea-ice model (Hunke and Lipscomb 2010) compared to 
climatology sea-ice represented in POAMA M24. 

In this report, the atmosphere-land model used in ACCESS 1.3 uncoupled and coupled models 
is based on version UM7.3 (or GA1.0) of the UM model and is coupled with the CABLE 
(version 1.8) land surface model. More details about ACCESS1.3 can be found in Bi et al. 
(2013), and details of the POAMA M24 can be found in Hudson et al. (2013).  In order to 
explore more recent updates to model physics and to run at higher vertical resolution, we have 
also made direct use of a preliminary version of the UM uncoupled model (using MOSES rather 
than CABLE) version GA4.0 (resolution N96L85).     

1.1 ACCESS 1.3x Uncoupled Model 

The atmosphere-land surface component models for ACCESS1.3 use UM 7.3 (also referred to 
as GA 1.0 or HadGEM3) together with the CABLE land surface model. We have adopted two 
changes to the models convection scheme as suggested by Sun et al. (2013). The first is to 
change the trigger for shallow convection, so that the shallow convection can happen without a 
vertical velocity restriction. The second is to increase the background entrainment rate for deep 
convection from 1 to 1.5, which has been found useful for improving the simulation of the 
MJO. In order to signify these differences with ACCESS1.3 we refer to this version as 
ACCESS1.3x.   

Some of the key physical processes represented in the atmosphere-land surface models that are 
improvements compared to the BAM3 model used in POAMA2 include:  

 atmospheric longwave and shortwave radiation allowing for the effects of clouds, water 
vapour, ozone, carbon dioxide and a number of trace gases;  
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 land surface processes represented by a 6-layer soil temperature and moisture prediction 
scheme;  

 a treatment of the form drag due to the sub-grid scale variations in orography;  

 improved vertical turbulent transport within the boundary layer;  

 large-scale precipitation determined from the water and ice content of cloud;  

 the effects of convection through a scheme based on the initial buoyancy flux of a 
parcel of air, which includes entrainment, detrainment and the evaporation of falling 
precipitation;  

 an interactive modelling of the effects of aerosols, such as sulphates, fossil fuel soot, 
mineral dust and biomass smoke as well as sea salt, with their transport, mixing 
deposition and radiative effects being represented;   

 time varying ozone, aerosols, and CO2 , which are updated  daily in the model.  

(source from: UM user guide 
 http://solar/~access/umdoc_system_7.3/UM_docs/papers/html/000/index.html). 

1.2 UM GA4.0 Atmosphere-MOSES Land  Model 

We also investigate the impact on forecast skill by using increased vertical resolution of the 
atmospheric model. Unfortunately, a version of ACCESS1.3x at N96L85 resolution has not 
been well tunning in the tropsphere. So, we have had to resort to directly using the UM version 
GA4.0 at N96L85 that uses the MOSES land surface model. In addition to increased vertical 
resolution, GA4.0 incorporates recent improvements to model physics (described in Walters et 
al. 2013). A major change is coupling structure of the land surface model compared to UM7.3 
(or GA1.0). It used the interface to coupled atmosphere and land surface model rather than put 
the land surface model into the atmosphere model. It will be much easier and quicker for 
upgrading the UM model in the coupled system in the future.    

1.3 ACCESS 1.3x Coupled Model      

For our experimentation with the ACCESS coupled model, we use a version also based on 
ACCESS1.3 coupled version but with the following changes:  

In the atmosphere model: 

 coastal ice albedo bug fixed; 

 new cloud overlap scheme with  cloud standard deviation set to 0.8 
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In the ocean model:  

 use the MA (Morel and Antonie, 1994) shortwave penetration schemes with maximum 
attenuation depth 300 m. 

 SeaWiFS chlorophyll concentration; 

The standard features of the ACCESS1.3 model are described in Bi et al. (2013).  

1.4 Initial Conditions      

In order to make experimental forecasts we need to initialize the atmosphere-land surface (and 
for the coupled experiments, the ocean). For good sampling of internal variability, we generate 
forecasts from the first of each month for the period 1980-2011. Because the initialization 
system for multiweek-seasonal prediction with ACCESS has yet to be developed, we have had 
to devise a simple scheme to initialize the models for the experimentation in this project. For 
uncoupled model forecasts, we have developed a method to directly initialize the atmosphere 
from the ERA-Interim reanalyse (Dee et al. 2011). We interpolate the ERA-interim model level 
data (0.75 degree resolution, 60 vertical levels) to the grid of the UM atmosphere model 
(N96L38). In order to initialize the land surface (CABLE), which we can not do directly from 
the ERA-Interim reanalyses, we devise a scheme based on a parallel AMIP run of the 
atmosphere-land model. We output the restart file from the AMIP run for the specific day that 
we wish to initialize (thus providing the land surface initial state) and we initialise the 
atmosphere model by using U, V, T and Q fields directly from ERA-Interim.  

In order to generate perturbed initial condition for ensemble hindcasts, we integrate forward 
from successively 6-hour earlier start times to 00Z on 1st of each month, thus creating a lagged 
ensemble. Because the dump file from the AMIP run is only available at 00Z on the 1st of each 
month, we then reinitialize the land surface with the 00Z values from the initial condition file. 
In so doing, we obtain a 10-member ensemble initial condition from 00Z on the 1st of each 
month. Although this method of initialization avoids shock in the atmosphere, we acknowledge 
that the lack of perturbation in the land surface is a potential shortcoming.  

For coupled model, a simple coupled initialization is developed. We run the coupled model 
continuously for the period we require initial conditions, during which we strongly relax the 
SST to the same SST as in the AMIP run and we constrain the atmosphere to the ERA-Interim 
reanalyses as in the POAMA2 system (daily nudging with a 0.8 weight). In so doing, we 
produce atmospheric initial conditions that are very similar to those used for the uncoupled 
model and we make an improved initialization of the land surface because the land surface 
model sees surface fluxes that are tightly constrained to ERA-Interim rather than being 
determined as the atmospheric model’s response to observed SST. The SST is initialized very 
close to the observed SST. There is no observed subsurface ocean data used in this 
initialization, but the ocean is initialized in balance with the atmospheric surface forcing that is 
highly constrained by the ERA-Interim reanalyses.  
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1.5 Prescribed SST       

In order to run the uncoupled model in forecast mode, we had to develop a scheme to update the 
SST during the forecast. We tried two different approaches. In the first, we damped the initial 
SST anomaly back to climatology with an e-folding decay time of 90 days (representative of the 
observed decorrelation time of tropical SST in the Pacific). In the second, we prescribed the 
SST during the forecast to follow the observed monthly mean SST. While this second method 
means that our results do not represent a true forecast (i.e., because we are using future 
information during the forecast), we find that the results are systematically better than for 
damping the observed SST anomaly. By comparison with the SST forecasts from POAMA, we 
can see that damping the observed anomalies to climatology is a less skilful forecast of future 
SST than what we can currently achieve with POAMA (Figure not shown). So, we decided to 
concentrate on forecasts using SST that is prescribed to be observed, acknowledging that we 
might be overestimating forecast skill when we switch to the fully coupled system.  

2. COMPARISON OF RESULTS 

Forecast quality and mean state bias from the ACCESS 1.3x uncoupled, coupled climate model 
and POAMA M24 model (POAMA2) are discussed in this Section. The aim of the comparison 
between the ACCESS 1.3x uncoupled and coupled models is to identify any potential benefits 
of coupling at short lead times (i.e., lead times to 1 month). We also want to compare the 
ACCESS 1.3x model to the POAMA M24 model because this will provide the benchmark for 
our expected performance gains when the POAMA system switches to ACCESS (POAMA3). 
We will also flag particular model errors that will help direct future development of the 
ACCESS model and the POAMA3 system.      

Both uncoupled and coupled hindcast runs with ACCESS are 10-member ensemble runs from 
the first of each month for 1982 to 2010. The results shown in this report are based on 10-
member ensemble means. POAMA M24 results are based on 33-member ensemble means. For 
comparison to the POAMA M24 forecasts, all verification and output from the ACCESS 
models are interpolated to the standard 144x73 grid (2.5 deg) used by POAMA M24.      

2.1 Model Mean State Biases 

We first look at the model mean state biases. For precipitation, we compare with both the GPCP 
(Global Precipitation Climatology Project) and CMAP (CPC Merged Analysis of Precipitation). 
Figure 1 displays the ACCESS1.3x uncoupled, 1.3x coupled model, and POAMA M24 model 
mean biases of precipitation for the first month of the forecasts from 1982 to 2007 (limited to 
2007 because of availability of observed data). Both ACCESS models have significant larger 
mean biases over the Indian Ocean and Maritime Continent than POAMA M24, with a 
prominent wet bias in the western Indian Ocean and dry bias over the Maritime Continent ocean 
areas. Coupling appears to alleviate some of the bias, although the ACCESS model versions are 
slightly different so we can’t be sure that this reduction is solely due to coupling. These large 
biases are consistent with the recent UKMO report (Johns et al. 2012) and represent a 
longstanding problem in the UM model. These biases may play a primary role in the poor 
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simulation of the MJO in this region using the UM. In contrast, over the western Pacific, the 
ACCESS models generally have better performance than POAMA M24, especially in the 
representation of the ITCZ’s. POAMA M24 has a particularly erroneous depiction of a double 
ITCZ, and some bias in the Maritime Continent.   

 

 

 

Fig. 1 Mean state biases of precipitation at the lead time 1 month for (a) and (d) ACCESS uncoupled 
model, (b) and (e) ACCESS coupled model, (c) and (f) POAMA M24 compared to GPCP (left 
panel) or CMAP (right panel) data for all start months from 1982 to 2007 (model results minus 
observation data). Units are mm/day. 



ACKNOWLEDGMENT 

    Improving Multiweek Rainfall Forecasts: Experiments with the ACCESS climate models      11    

Concentrating on biases over Australia in the first month, which is difficult to surmise in Fig. 1, 
we show detailed maps for biases of precipitation (PREC), maximum temperature (TMAX), 
minimum temperature (TMIN) (Fig. 2). Here we verify temperature and precipitation using the 
AWAP (Australia Water Availability Project) analyses for a common period 1982 to 2010. 
Generally, over Australia, there is not too much difference in biases between ACCESS 
uncoupled and coupled models. However, compared to the well-known dry bias over Australia 
in POAMA M24, the ACCESS models have a noteworthy wet bias over the central east (Fig. 
2). The largest bias occurs in DJF season for both ACCESS and POAMA models (Fig. A.1). 
Consistent with the wet bias in ACCESS, TMAX in ACCESS is too cold and TMIN is too 
warm (enhanced cloudiness associated with increased rainfall lowers day time temperature and 
reduces cooling at night). In Fig. 2, both ACCESS and POAMA have much less diurnal range 
compared to observation. These biases based on initialized forecasts are also very similar to the 
biases from the long AMIP climate runs. The bias in TMAX in ACCESS especially needs 
attention because of the key role that daytime temperature plays for local evaporation. Figures 
for the biases of PREC, TMAX and TMIN in each season can be seen in Appendix A.  
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Fig. 2 Mean state biases of precipitation (PREC), maximum temperature (TMAX), minimum mperature 
(TMIN) at the lead time 1 month over Australia for ACCESS uncoupled model (left panel), 
ACCESS coupled model (middle panel), and POAMA M24 model (right panel) compared to 
AWAP observation data for all start months from 1982 to 2010 (model results minus AWAP data). 
Units are mm/day for PREC, and °C for TMAX and TMIN. 

 

POAMA M24 ACCESS uncoupled ACCESS coupled 

TMIN 

TMAX 

PREC 
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We next look at the bias in the large-scale circulation (Fig. 3), which will play a key role in how 
the SAM and the teleconnections of ENSO and the IOD affect Australian climate, hence 
affecting the capability to make regional forecasts of rainfall and temperature. We examine the 
bias in Geopotential Height at 500 hPa compared to NCEP reanalysis data at day 1, day 5 and 
day 10 of the forecast (the bias after day 10 is very similar to day 10). Because POAMA M24 
only outputs instantaneous heights rather than daily means as for ACCESS, we have to verify 
ACCESS model data with the daily mean NCEP data, but verify POAMA M24 with the 
instantaneous analyses at 00Z. The instantaneous data has more noise compared to the daily 
mean data so this needs to be taken into account in this comparison. Nevertheless, the ACCESS 
models clearly have a reduced circulation bias compared to POAMA M24, especially at high-
latitudes. However, there are noticeable biases in the Australian sector in ACCESS (e.g. positive 
heights over the east of the continent, which would be expected to interfere with the west-east 
progression of midlatitude weather systems). This height bias is hypothesized to stem from the 
dry bias in the Maritime Continent region, which is expressed as a Rossby wave train emanating 
from the eastern Indian Ocean as during a positive Indian Ocean Dipole episode. Hence, the dry 
bias in the eastern Indian Ocean in the ACCESS models will affect not only the climate in the 
tropics but also the capability to predict climate in the subtropics. 

The development of these biases is a very fast process. The major bias patterns immediately 
show up at day 1 and are almost identical in pattern as in the long climate run, especially for 
ACCESS model. This implies that we do not need long climate runs in order to identify the 
ACCESS model biases.  In fact, our experimental forecasts, whereby we have initialized the 
ACCESS climate model, is essentially what is required for participation in the Transpose-AMIP 
project, which aims to tackle systematic climate model bias by utilizing suites of short range 
forecasts. Hence, an unexpected outcome of this project has been the development of the 
Transpose AMIP protocol for the ACCESS model.  

 



ACKNOWLEDGMENT 

14    Improving Multiweek Rainfall Forecasts: Experiments with the ACCESS climate models 

 

 

Fig. 3 Mean state biases of Geopotential Height at 500 hPa at day 1, day 5, and day 10 for 
ACCESS1.3x uncoupled model (left panel), ACCESS1.3x coupled model (middle panel), and 
POAMA M24 model (right panel) compared to NCEP reanalysis data for all start months from 
1982 to 2010 (model results minus NCEP data). Note: the ACCESS model verifies with daily 
mean NCEP data and POAMA M24 verifies with instantaneous 00Z NCEP data.   

2.2 Forecast Skill 

We now assess aspects of forecast skill for the first month of the forecasts. We focus on the 
SON and DJF seasons since SON is the peak season for impacts of ENSO and the IOD, and 
DJF is the peak season for the MJO. Results for other seasons are provided in Appendix B. 

2.2.1 Skill for Rainfall and Temperature  

We calculate the temporal anomaly correlation coefficient (ACC) between AWAP analyses and 
model forecasts for precipitation, maximum temperature, and minimum temperature over 
Australia from 1982 to 2010 for the monthly means over the first month of each forecast (Figs. 

POAMA M24 ACCESS uncoupled ACCESS coupled 

Day1 

Day5 

Day10 
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4 and 5). The results for the JJA and MAM seasons can be seen in Appendix B. For 
precipitation, the forecast skill in SON is generally high over southern and eastern Australia, 
reflecting the predictable impacts of ENSO and the IOD. Encouragingly, both ACCESS models 
outperform and the coupled ACCESS model is better than the uncoupled model although the 
gains are modest. The biggest increase in skill relative to M24 is over northeast Australia. The 
reason for these differences will be explained in the next Section. Unfortunately, we do not see 
much improvement for the DJF season, reflecting the challenge of predicting precipitation 
during summer months.  

For maximum temperature, ACCESS 1.3 coupled model is better than the uncoupled model and 
better than POAMA M24, consistent with the improvements in rainfall predictions. For 
minimum temperature, the differences in forecast skill between models appear to be slight. 
However, as we will address in the next section, the estimates of forecast skill from ACCESS 
should be considered on the low side due to sub-optimal ensemble generation and initialization.            
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Fig. 4 Temporal anomaly correlation coefficient (ACC) between AWAP observation data and ensemble 
mean precipitation (PREC), maximum temperature (TMAX) and minimum temperature (TMIN) 
over Australia for ACCESS uncoupled model (left panel), ACCESS coupled model (middle panel), 
and POAMA M24 model (right panel) in SON season from 1982 to 2010.  

 

SON 

TMIN 

TMAX 

PREC 

POAMA M24 ACCESS uncoupled ACCESS coupled 
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Fig. 5 The same as Fig.4, but in DJF season.   

2.2.2 Skill for Geopotential Height   

We now step back from the Australian focus and assess the performance of the ACCESS model 
from a hemispheric perspective. We first explore the “weather” forecasting capability of the 
systems by scoring forecasts of 500 hPa geopotential height anomalies over the southern 
hemisphere extratropics. Because the ACCESS model has higher resolution than POAMA M24 
and it is initialized with presumably improved atmosphere initial conditions (ERA-Interim for 

TMIN 

TMAX 

PREC 

POAMA M24 ACCESS uncoupled ACCESS coupled 

DJF 



ACKNOWLEDGMENT 

18    Improving Multiweek Rainfall Forecasts: Experiments with the ACCESS climate models 

ACCESS as compared to ERA-40 for POAMA M24), we would expect that the ACCESS 
model should provide an improved deterministic prediction of midlatitude “weather” (i.e., days 
1-10) even though the model set up targets climate scales. We display in Fig. 6 the spatial 
anomaly correlation averaged over the mid-latitudes (left) and over the polar cap (right) as a 
function of forecast lead time for forecast starts from 1st Sep, 1st Oct, and 1st Nov. Both 
ACCESS models provide significantly improved “weather” forecasts, with the improvement 
equating to about 1.5 days (i.e., forecast skill for POAMA at day 2 is achieved by ACCESS at 
day 3.5). To quantify the possible impact of improved initial conditions, we also provide the 
correlation of the respective initial conditions from each model with NCEP (crosses on X axis). 
At least for the mid-latitude region, the quality of the initial condition for POAMA M24 appears 
to be similar to the quality for ACCESS, so we cannot attribute the differences seen in Fig. 6 to 
the initial conditions. The other likely explanation is that the high skill in ACCESS stems from 
model improvements compared to POAMA M24. However, because we are verifying 
instantaneous output from POAMA M24 (more noisy) and daily mean output from ACCESS 
(less noisy) some of the improvement in ACCESS seen in Fig. 6 may actually stem from the 
effective smoothing of the ACCESS forecasts. More insight into the actual improvement for 
ACCESS will be assessed in Section 3.4.1 and 3.4.2 where we make use of the available daily 
mean output from POAMA and we use spatial smoothing for verification of the MJO and SAM 
indices. We do not see any notable difference in the performance of “weather” forecasts 
between the ACCESS1.3x coupled and uncoupled models within the first 10 days. This implies 
that the atmosphere initial condition and the model configuration are the dominant factors for 
improving weather forecast skill.  
 

 

Fig. 6 The spatial correlation (SCOR) between NCEP reanalysis data and model forecasts for 
Geopotential Height anomalies at 500 hPa over (a) 60°S-20°S and (b) 60°S-90°S in SON as a 
function of lead time (days). The green line is ACCESS uncoupled model, the red line is ACCESS 
coupled model, and the blue line is POAMA M24 model. The blue X is the SCOR between 
POAMA M24 (based on ERA-40) initial condition and NCEP 00Z analyses, and the red X is the 
SCOR between ACCESS (based on ERA-interim) initial condition and NCEP 00Z analyses.  
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2.3 Teleconnection Pattern of ENSO and IOD 

Regional climate predictability, especially for rainfall, is primarily contributed to by slow 
coupled atmosphere ocean variations due to ENSO and the IOD, but also by slow internal 
variations of the atmosphere associated with the MJO and the SAM. The representation of these 
modes and their remote impacts over Australia is critical for good forecast performance. We 
now assess these modes in the ACCESS models and compare to POAMA M24. 

We begin by looking at ENSO and the IOD. We determine the teleconnection by regression of 
the equivalent monthly mean Niño3.4 and IOD indices respectively onto the precipitation 
(PREC), TMAX and TMIN anomalies (averaged over days 1-30 of the forecasts) for the SON 
and DJF seasons (Figs. 7, 8 and 9).   

For precipitation in SON (Fig.7), the observed relationship for both Niño3.4 and the IOD is 
primarily dry in the east, i.e., dry during El Nino plus positive IOD events. There are stronger 
dry anomalies in the south when using the IOD index (cf Cai et al., 2012). Both of the ACCESS 
models outperform POAMA M24, especially in the north east. However, all the models show 
weaker teleconnection for both ENSO and IOD indices over the south-east Australia than 
observed, which probably stems from biases in the rainfall in the Maritime Continent region 
(bias is weaker in POAMA and so teleconnection is slightly better). For DJF, the ACCESS 
models are better than POAMA M24 over northern Australia, which probably reflects greater 
sensitivity to ENSO due to a reduction in the dry bias in ACCESS compared to POAMA. 
However, the ACCESS coupled model shows the worst performance over north-west Australia 
for the IOD, which again flags the dry bias in the Maritime Continent region as being at fault.  
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Fig. 7 Regression of Niño3.4 and IOD indices onto precipitation anomalies over Australia in SON and 
DJF seasons for Observation, ACCESS uncoupled model, ACCESS coupled model and POMAM 
M24 (from top to the bottom panel). Units are mm/day.   

For TMAX in SON (Fig. 8), both teleconnections for ENSO and IOD in the ACCESS models 
are too weak compared to observations and to POAMA M24, especially the teleconnection of 
the IOD over south-east Australia. The ACCESS coupled model has a slightly stronger response 
than the ACCESS uncoupled model, which might explain why the coupled prediction skill of 
TMAX is higher than the uncoupled skill (see the results in Section 3.2.1). However, the 
accurate amplitude of the teleconnection for climate drivers may not be the only necessary 
reason to have better prediction skill. For example, in DJF, although the teleconnection pattern 
of TMAX in ACCESS coupled model over the north-west is the weakest, the prediction skill of 
TMAX is the highest over that region.       
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Fig. 8 The same as Fig.7, but for maximum temperature anomalies. Units are °C. 

For TMIN in SON (Fig. 9), the teleconnection is even weaker in the ACCESS models 
especially for the IOD over southern Australia. The ACCESS models have relatively higher 
skill over western Australia, but this is evidently not having improved ability to capture ENSO 
and IOD teleconnection. In DJF, all the models show stronger teleconnection with ENSO over 
northern Australia than observed. Both coupled models teleconnections with the IOD are too 
strong over south-western Australia.       
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Fig. 9 The same as Fig.7, but for minimum temperature anomalies.  

The teleconnections from ENSO and the IOD to Australian climate are ultimately driven by the 
tropical rainfall response to each of these phenomena. In order to assess the realism of the 
tropical rainfall responses during ENSO and the IOD, we plot the regression of Niño3.4 and 
IOD indices onto precipitation anomalies over the tropical Indian and Pacific Ocean region 
(30°N-30°S, 35°E-70°W) in Fig. 10. For the regression onto Niño3.4, the pattern, amplitude and 
location of the maximum centres in the ACCESS models are more close to the observation than 
POAMA M24. For instance, the ACCESS models pick up the negative anomaly in the Bay of 
Bengal. Over the western Pacific Ocean, the negative precipitation anomalies in the ACCESS 
models are relatively weaker over the South China Sea and the East China Sea than observation 
and POAMA M24. In contrast, POAMA M24 shows too strong negative precipitation 
anomalies in the region of Indonesia and the Coral Sea. For positive precipitation anomalies in 
the central Pacific, both the ACCESS and POAMA coupled models have the common issue of 
erroneous extension westward compared with observation and the uncoupled model. The 
rainfall anomalies in the central Pacific in POAMA M24 are too broad compared with 
observation and the ACCESS models, which has important implications for longer lead 
forecasts of ENSO. In addition, in the eastern Pacific along the equator, the ACCESS models 
performance appears better than POAMA M24.   
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For the IOD index over the Indian Ocean, the ACCESS models have slightly better performance 
in the western Indian Ocean. POAMA M24’s precipitation response in the western Indian 
Ocean is too strong. Although the ACCESS models have much larger mean biases of 
precipitation over the Indian Ocean, it seems not to have an overly strong impact on the 
anomalies and the teleconnection. 

In summary, both ACCESS models and POAMA M24 depict the key teleconnections of ENSO 
and the IOD reasonably well, with the ACCESS models generally showing slightly improved 
performance over POAMA M24. This improved depiction of the teleconnections is reflected in 
the modest improvement of regional forecast skill using the ACCESS models.  

 

 

Fig. 10 The same as Fig.7, but over the tropical Indian and Pacific ocean region (30°N-30°S, 35°E-
70°W). Units are mm/day. 
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2.4 Forecast Skills for MJO and SAM Indices 

Multi-week predictability is also contributed to by slow internal variations of the atmosphere. 
Here we assess the performance of predicting and simulating two key modes: the MJO and the 
SAM.   

2.4.1 Skill for MJO Index 

We assess the forecast skill (temporal correction) for the MJO in DJF (the season when the 
MJO is strongest) and all start months in Figs. 11 and 12 using the bivariate correlation of the 
MJO index (Rashid et al. 2009). The skill for the other seasons is shown in Appendix B (Fig. 
B.3). In DJF, POAMA M24 forecasts maintain skill longer than the ACCESS model, with a 
correlation of 0.5 achieved out to 24-days lead time. Disappointingly, the ACCESS coupled 
model falls to 0.5 at 20-days lead and the uncoupled model only achieves 16-days lead. 
Notably, during the first 10-days, the skill of the ACCESS models is slightly higher than 
POAMA M24 model, which suggests that the initial conditions in ACCESS are better than 
POAMA, but the representation of the MJO is poorer in ACCESS so that after day 10 the skill 
is worse in ACCESS. Importantly, the ACCESS coupled model outperforms the uncoupled 
model.  

Because of the poorer performance of the ACCESS model for predicting the MJO in the peak 
season of the MJO compared to POAMA, we explored the impact of some modifications of the 
convection scheme in the UM that are targeted for improving the representation of the MJO 
(discussed in Sec. 2). However, using the uncoupled model we could discern no difference in 
forecast performance with and without these changes. We note that the ACCESS1.3x coupled 
model did not use these changes to the convection scheme, but it does show better skill for the 
MJO compared to the uncoupled model with the changes. However, forecast performance is still 
lower than POAMA M24 during the peak season (DJF) for the MJO. The reason for 
improvement in the coupled model needs to be determined, because it could stem from 
improved air-sea interaction due to coupling or reduced mean state biases in the Maritime 
Continent that then allow a better representation of the MJO through this reason. Discerning this 
cause will help guide future model improvements.  
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Fig. 11 Bivariate correlation for RMM MJO indices as a function of lead time (days) for ACCESS 
uncoupled (green line), ACCESS coupled (red line), and POAMA M24 (blue line) models in DJF.  

When all start months are considered together (Fig. 12a), the performance of the ACCESS 
coupled model is clearly superior to POAMA M24 and the uncoupled model. We attribute this 
improvement over POAMA M24 to the reduction in mean state bias in the ACCESS coupled 
model for the non summer seasons, although more work is required to prove this. We also 
consider the bivariate root mean square error (RMSE) and ensemble spread (Fig. 12b). 
Although the RMSE for the two coupled models are similar, the forecast spread for the 
ACCESS model is much less than for POAMA. This reflects the sophisticated breeding 
technique used to generate ensemble perturbation in POAMA and the simplistic approach of 
using lagged initial conditions for ACCESS. We therefore expect substantial gains in 
performance (both skill and reliability) from ACCESS once the breeding technique is 
implemented.       

20d
16d
24d
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Fig. 12 Bivariate correlation skill of the RMM MJO index (left) and bivariate root mean square error 
(RMSE, solid line) and ensemble spread (dash line) (right plot), as a function of lead time (days) 
for ACCESS uncoupled (green line), ACCESS coupled (red line), and POAMA M24 (blue line) 
models by using all start months data (right plot).   

2.4.2 Skill for SAM Index 

We assess the skill of forecasting the SAM by forming an index of daily mean, zonal mean 
surface pressure at 40°S minus 60°S. High SAM, which reflects a poleward shift of the mid-
latitude westerlies, will have lower pressure at 60°S and higher pressure at 40°S and so the 
index will be positive. We concentrate on the SON season as this is the season when the SAM is 
most active. The skill of predicting the SAM index for both the coupled and uncoupled 
ACCESS models beats POAMA M24 by about 3 day lead time. Unlike the MJO, there is no 
significant difference between ACCESS uncoupled and coupled models. Although we see some 
small increase in skill at the shortest lead times (which might reflect improved initial conditions 
and better models), the main gain in skill over M24 does not appear until after 8-9 days. Based 
on previous work by Roff et al. (2010) with another version of the ACCESS model, this delayed 
impact of increased skill probably can be attributed to better resolution of the stratosphere in the 
ACCESS models (L38) over POAMA (L17).  

We again see that the ACCESS forecasts are initially under-dispersive (spread is much smaller 
than RMSE, Fig. 14a), so we can expect further gains in the ACCESS model when the ensemble 
perturbation strategy is deployed. When taken over all start months, the benefit of ACCESS 
over POAMA M24 is less obvious (Fig. 14b). Perhaps this is not surprising because the main 
source of longer lead predictability of the SAM in the other seasons is not the descent of 
variability from the stratosphere but rather modest forcing by tropical SST variations associated 
with ENSO (Lim et al. 2013), which are equally well captured in POAMA and ACCESS.   
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Fig. 13 The same as Fig.11, but for the SAM index.   

 

Fig. 14 Same as Fig.12, but for the SAM index.   

2.5 Impact of Improved Vertical Resolution 

We also investigate the impact on forecast skill by using improved vertical resolution of the 
uncoupled ACCESS model. We increased the vertical resolution to 85 levels in both the UM7.3 

14d
14d
11d
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(ACCESS 1.3x) and the newest GA4.0 version of the UM that uses the MOSES land surface 
scheme. Our main interest in increased resolution is the impact of  better resolving the 
stratosphere which Roff et al. (2011) can be expected to have an impact on tropospheric forecast 
skill after about 10-15 days lead time. We expect the main impact to be from variability of the 
polar vortex which affects the SAM during boreal spring. Hence, we focus on forecast skill of 
the SAM index during the SON season. Unfortunately, we see no indication of improved skill 
using the L85 model over the L38 model out to the limit of deterministic predictability for the 
SAM (~15 days). Our interpretation is that there is no more improvement obtainable from L38 
over L17 (Fig 15) in going to L85 over L38.    

We additionally investigate the forecast skill over the polar cap at each level in the vertical so as 
to see how the improved skill in predicting the stratosphere afforded by L85 impacts the 
troposphere. We calculate the spatial correlation of temperature anomalies from 60°S to 90°S at 
each level and make the skill score (percentage improvement) compared to uncoupled ACCESS 
1.3x UM7.3 L38 (Fig. 16). Unfortunately, the UM7.3 L85 version is not well tuned, so the 
initial skill in the troposphere is worse than L38 (Fig. 16a). Improvement is seen in the 
stratosphere but the gain over L38 is modest. Furthermore, the L85 version of UM7.3 crashes 
more than 20% of the time, which necessitates a manual restart in order to complete the 
forecasts. 

In contrast, the GA4.0 L85 version is stable. From Fig. 16b, we see similar forecast skill in the 
troposphere as ACCESS 1.3 L38 but with a significant improvement in the stratosphere that 
appears to slowly descend to the tropopause by ~30 day lead time. However, we do not see any 
extension of this increased skill into the troposphere as was found by Roff et al. (2011). In 
summary, while we do see a significant improvement in forecast skill in the stratosphere using 
increased vertical resolution, we do not see any appreciable impact on prediction of the SAM 
that would then carry over to improved prediction of Australian rainfall.    

 

Fig. 15 The skill of SAM index as a function of lead time for GA4.0 L85 (red line), UM7.3 L85 (green line) 
and ACCESS1.3x uncoupled L38 (blue line).  
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Fig. 16 The skill score of the spatial correlation of temperature anomalies (60°S-90°S) for (a) UM7.3 L85 
relative to UM7.3 L38 (i.e., ACCESS1.3x), and (b) GA4.0 L85 relative to UM7.3 L38 (i.e., 
ACCESS1.3x).   

3. SUMMARY AND RECOMMENDATIONS/IMPLICATIONS 
FOR DEVELOPMENT OF POAMA3 

We have compared the mean state biases and forecast skill for 30 day predictions using versions 
of the ACCESS1.3x uncoupled and coupled models and the POAMA M24 coupled model. Our 
overall finding is that we can expect a modest gain in forecast skill for regional prediction of 
rainfall and temperature across Australia at least for the first month of the forecast by using 
ACCESS compared to POAMA2. We attribute these performance gains to a combination of 
reduced mean state biases, increased horizontal resolution and improved model physics. 
However, there are some notable shortcomings of the ACCESS model. This includes degraded 
prediction performance of the MJO in the season when the MJO is most dominant and has the 
most impact on Australian climate and increased mean state precipitation bias in the Indian 
Ocean, which is a critical region for driving Australian climate variability.   

Our analysis here recognizes the limitation of the simplistic ensemble generation strategy 
employed for the ACCESS experiments and so the performance gain expected from using 
ACCESS should be greater than what we have indicated here.  

We further note that we were unable to make use of the most recent upgrades by the UKMO to 
the UM model because they were not yet made available to us so that we could run in initialized 
climate mode. Hence, we would anticipate even further gains in performance once the newest 
versions of ACCESS based on UM GA6.0 are implemented at BoM. Our experimentation with 
simple modifications to the convective scheme in order to improve prediction of the MJO 
proved to be futile. However, recent developments at the UKMO suggest improved prediction 
of the MJO will be achieved with UM GA6.0. 

(a) UM 7.3 L85/UM7.3 L38 (b) GA 4.0 L85/UM7.3 L38 
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A key finding of this research is that we could see no benefit of increased vertical resolution at 
least for forecasts out to 30 day lead time. We do not discount that the benefit of increased 
resolution, especially resolution of the stratosphere, may be felt at longer leads. Importantly, 
this is a moot point because all future versions of the UM will be based on L85 and so we will 
necessarily use L85 whether or not there is a demonstrable improvement for regional forecasts 
of Australian climate.  

As a summary, we note some key recommendations for development of POAMA3 based on 
ACCESS and for future investigation using ACCESS: 

1) Considering the modest forecast gains documented here, we recommend further 
improvements of the atmospheric component for the final configuration of POAMA3, including 
improvements that may available in the newest version of UM GA6.0. In the overall picture for 
developing POAMA3, this will probably not cause a delay because the development of the 
assimilation/initialization scheme for POAMA3 will probably take up to a year, and this can be 
done using ACCESS1.3x. 

 2) The initial version of ACCESS based on UM GA6.0 will probably not have the CABLE 
land surface model. While would make the seasonal prediction version of the model 
substantially different from the climate version, the use of MOSES would make it consistent 
with the NWP version. Use of MOSES would be more consistent with the initialisation strategy 
used in NWP. There is no a priori criterion that clear points to choosing CABLE over MOSES. 
Therefore the choice of CABLE land surface model for POAMA-3 should be based both on 
performance and timelines (e.g. of CABLE is not coupled to GA6.0 in time then MOSES 
should only be considered). 

3) The POAMA3 model should be based on the coupled version of ACCESS that can readily 
use the newest updates to the UM from the UKMO. This will facilitate collaboration with 
colleagues at the UKMO. 

4) Some key model biases are still present in all versions of the UM-ACCESS that will affect 
prediction skill of the Australian climate, most notably the rainfall biases across the Indian 
Ocean and Maritime Continent. Reduction of these biases should be a priority target for 
ongoing model development, ideally in collaboration with the UKMO. 

5) Experience at the UKMO suggests that further increases in horizontal resolution have a 
beneficial impact on mean state biases and forecast skill. We have yet to be able to experiment 
using ACCESS at resolutions better than N96. Considering the modest expected performance 
gains achieved with the N96 version, we further recommend that immediate experimentation 
with the higher resolution version of ACCESS (e.g. N144 or N216) commence prior to final 
configuration of POAMA3. To do so will require securing additional staffing and computing 
resources, but also a sustained effort to properly configure the model. This also includes 
generation of necessary ancillary files that are required to run the model.    

6) One of the most important outcomes of this study was the demonstration of improved 
prediction of the MJO using the coupled model. This appears to be a robust result and possibly 
can provide increased insight into the mechanism and predictability of the MJO. The cause of 
this increased skill should be determined (e.g., reduced mean state bias or a direct benefit of 
intraseasonal SST variations).  
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APPENDIX A – MEAN BIASES 

 

 

Fig.A. 1 Precipitation mean bias over Australia for ACCESS uncoupled model (left panel), ACCESS 
coupled model (middle panel), and POAMA M24 model (right panel) compared to AWAP 
observation data in four seasons from 1982 to 2010 (model results minus AWAP data). Units are 
mm/day. 
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Fig.A. 2 The same as Fig.A.1, but for maximum temperature (TMAX). Units are °C. 

 

DJF 

MAM 

JJA 

SON 

ACCESS uncoupled ACCESS coupled POAMA M24 



APPENDIX A – MEAN BIASES 

    Improving Multiweek Rainfall Forecasts: Experiments with the ACCESS climate models      35    

 

 

Fig.A. 3 The same as Fig.A.1, but for minimum temperature (TMIN).  
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Fig.B. 1 Temporal anomaly correlation coefficient (ACC) between AWAP observation data and ensemble 
mean precipitation (PREC), maximum temperature (TMAX) and minimum temperature (TMIN) 
over Australia for ACCESS uncoupled model (left panel), ACCESS coupled model (middle panel), 
and POAMA M24 model (right panel) in MAM season from 1982 to 2010.  
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Fig.B. 2 The same as Fig.B.1, but in JJA season.   
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Fig.B. 3 The skill of predicting the MJO bivariate index (temporal correlation) in the four seasons.  
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Fig.B. 4 The skill of predicting the SAM index (temporal correlation) in the four seasons.  
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