

The Centre for Australian Weather and Climate Research
A partnership between CSIRO and the Bureau of Meteorology

ACCESS Post-Processor Version 1.0
Peter Uhe, Timothy Hume, Mark Collier

CAWCR Technical Report No. 058

November 2012

ACCESS Post-Processor Version 1.0

Peter Uhe1, Timothy Hume2, Mark Collier1

.

1The Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research
2The Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology

CAWCR Technical Report No. 058

November 2012

National Library of Australia Cataloguing-in-Publication entry : (pbk)

Author: Peter Uhe, Timothy Hume, Mark Collier.

Title: ACCESS Post-Processor Version 1.0.

ISBN: 978-1-922173-24-9 (Electronic Resource PDF)

Series: CAWCR technical report, no. 058.

Notes: Includes bibliographical references and index.

Enquiries should be addressed to:

Peter Uhe
CSIRO Marine and Atmospheric Research
Private Bag No 1
ASPENDALE VIC 3195

Peter.Uhe@csiro.au

Copyright and Disclaimer

© 2012 CSIRO and the Bureau of Meteorology. To the extent permitted by law, all rights are reserved

and no part of this publication covered by copyright may be reproduced or copied in any form or by

any means except with the written permission of CSIRO and the Bureau of Meteorology.

CSIRO and the Bureau of Meteorology advise that the information contained in this publication

comprises general statements based on scientific research. The reader is advised and needs to be

aware that such information may be incomplete or unable to be used in any specific situation. No

reliance or actions must therefore be made on that information without seeking prior expert

professional, scientific and technical advice. To the extent permitted by law, CSIRO and the Bureau

of Meteorology (including each of its employees and consultants) excludes all liability to any person

for any consequences, including but not limited to all losses, damages, costs, expenses and any other

compensation, arising directly or indirectly from using this publication (in part or in whole) and any

information or material contained in it.

i

Contents

ABSTRACT .. 1

1 INTRODUCTION ... 2

2 INSTALLATION .. 4
2.1 Subversion ... 4

2.2 Dependencies ... 4

2.3 Setting Environment Variables.. 5

2.4 Ancillary Files ... 5

3 PRE (POST)-PROCESSING ... 6
3.1 um2netcdf.py .. 6

3.2 runUm2netcdf.py .. 6

4 RUNNING THE APP ... 8
4.1 Modifications / Customisation of the APP ... 8

4.2 Post Processor Output: ... 9

5 COMPONENTS OF THE APP .. 10
5.1 APP Core ... 10

5.2 APP Wrapper .. 11

5.3 Database .. 12
5.3.1 Experiment Configuration Table ... 12
5.3.2 Grids Table .. 13
5.3.3 Champions Table: ... 14
5.3.4 File Master Table ... 16

5.4 Database Manager ... 18
5.4.1 Modifying database_manager.py .. 18

5.5 APP Functions .. 19

6 SPECIFYING VARIABLES IN CHAMPIONS FILES... 20
6.1 ACCESS File Location .. 21

6.2 Derivations ... 21

6.3 Axes Modifiers. ... 23

ACKNOWLEDGMENTS ... 24

REFERENCES.. 25

Appendix A: DRS TOOL ... 26

Appendix B: QC CHECKING .. 27

ii ACCESS Post-Processor Version 1.0 • November 2012

List of Tables

Table 1. Experiments Database Table Fields. ... 12

Table 2. Grids Database Table Fields. ... 13

Table 3. Dimension Identifiers. ... 13

Table 4. List of Champions Files. ... 15

Table 5. File Master Database Table Fields. .. 16

Table 6. Champions Configuration File. .. 20

Table 7. Calculation of clw. ... 21

Table 8. Calculation of tasmin. ... 22

 1

An important component of the submission of the ACCESS coupled model data to the
Coupled Model Intercomparison Project Phase 5 (CMIP5) is publishing a
comprehensive set of the CMIP5 requested data and ensuring the data meets the
stringent CMIP5 format and quality requirements. CMIP5 specifies a standard for
model output where each parameter is stored in a single NetCDF file and includes
additional meta-data. These requirements are designed to make analysis of the data as
straight forward as possible.

This document describes the ACCESS Post-Processor (APP), and how it is used. The
APP has been designed to automate the production of ACCESS CMIP5 data, using a
database that contains information about each of the requested parameters for any
experiment. Parameters are processed via a “wrapper” tool which selects entries in the
database then processes them through the APP. The database approach allows simple
and flexible user control of the processing.

The ACCESS model is able to output data that is not requested for CMIP5 but is of
scientific interest to researchers. The APP is also able to process these data into the
CMIP5 format.

ABSTRACT

2 ACCESS Post-Processor Version 1.0 • November 2012

1 INTRODUCTION

The Australian Community Climate and Earth System Simulator (ACCESS) coupled model (Bi
et al, 2012), is comprised of the Met Office Unified Model (UM; Collins, 2008), the MOM4
ocean model (Griffies et al., 2004), the CICE4.1 sea-ice model (Hunke and Lipscomb, 2010),
coupled using the OASIS coupler (Redler et. at. 2010). The ocean and sea-ice component
(ACCESS-OM) and coupling strategy are described in Bi and Marsland, (2010).

There are two different versions of ACCESS used in CMIP5- ACCESS1.0 and ACCESS1.3.
The main difference relevant to post-processing is that ACCESS1.0 uses the UM's default land
scheme MOSES, while in ACCESS1.3, this is replaced by the Community Atmosphere
Biosphere Land Exchange (CABLE) model (Kowalczyk et. al. 2006).

One of the main roles of the ACCESS model is to produce a submission to CMIP5 (Taylor et al,
2011b), for use in the IPCC Fifth Assessment Report (AR5). CMIP5 has a prescribed set of
experiments and output parameters requested for those experiments. It also requires that
submitted data are in NetCDF format, with one parameter per file, and meet particular metadata
conventions (Taylor et al, 2011a). These requirements ease the process of comparing the
CMIP5 models.

The APP uses the Climate Model Output Rewriter tool (CMOR2; Doutriaux et al. 2012) to
convert ACCESS model output to the CMIP5 format. CMOR has several computer language
interfaces. It was decided to use the Python interface because it compliments current ways of
local data analysis and is the interface most regularly tested by the CMOR developers.

The APP system is split into three main components. Firstly there is an SQLite database that is
used to drive the other components of the APP. The database contains information that is
required to generate the CMIP5 data sets and to describe the experiments to be post-processed.
Secondly there is the APP core script, which takes information collected from the database.
Using this information, it converts ACCESS output to CMIP5 files using CMOR2. Finally, the
APP Wrapper is located between the database and APP. It automates selecting database entries
and passing this information to the APP core script to produce the corresponding files.

In addition to directly converting variables from the model output into CMIP5 format, the APP
is able to produce diagnostic parameters that are calculated from one or more parameters in the
raw model output. These derivations are defined in configuration files for the database, and can
use external functions allowing completely general calculations to be performed. It is also
possible to define new CMOR tables containing variables that are not requested for CMIP5
(unsolicited variables) and then configure the APP system to process these variables into
CMIP5 format. The steps to produce unsolicited variables using the APP are described in
section 4.1.

Another feature of the APP system is that it may be run for incomplete experiments, allowing
the diagnostics to be used for evaluation of the model during development.

 3

This document describes the APP, and is a guide on its use.

Section 2 covers the installation of the APP from the subversion repository and the
dependencies that are required to run the APP. It then describes how to configure environment
variables and the location of ancillary files.

Section 3 describes the use of scripts to convert the UM output to NetCDF format.

Section 4 is a quick start guide on running the APP.

Section 5 describes the components of the APP. The main database tables are also described in
this section.

Section 6 gives an overview of how variables are specified in the “Champions files”.

4 ACCESS Post-Processor Version 1.0 • November 2012

2 INSTALLATION

The APP consists of Python scripts that are available from a subversion (SVN) repository. The
subversion repository is currently located on the National Computing Infrastructure National
Facility (NCI NF) access_tools subversion repository.

2.1 Subversion

To checkout the subversion repository first you will need to gain the correct permissions. Email
Peter Uhe or Martin Dix to arrange this (you will need an existing account with NCI NF).

Then run the unix command:

svn checkout https://trac.nci.org.au/svn/access_tools/post_processor/trunk/

If you are using Windows you can use an application such as TortoiseSVN to check out the
SVN repository.

2.2 Dependencies

To run the APP on the NCI NF machines dcc or vayu, you will need to load the following
modules:

python/2.6, netcdf/3.6.3, python/2.6-matplotlib, ncl/6.0.0, hdf5/1.8.7

These modules are loaded with the system command “module load”. e.g. module load
python/2.6. Equivalent packages will need to be installed on other machines where the APP is to
be employed.

In addition to this, CDAT is required. Because of issues with the standard CDAT installation on
the NCI NF machines, custom CDAT executables have been compiled. The
CDAT_LOCATION environment variable is used to point to the CDAT library.

To run the APP on a machine other than at NCI NF, note that the following python libraries are
pre-installed on NCI NF and may need to be installed.

Scientific.IO.Netcdf, cmor, matplotlib

 5

2.3 Setting Environment Variables

Environment variables are used to enhance the portability of the APP between different
machines. These need to be set for the APP to function correctly.

APP_OUTPATH:
Location that the APP output files are written to. e.g. /short/p66/pfu599/

CDAT_LOCATION:
Location of the Python CDAT library. Required if CDAT is not in the Python path
For dcc use: /home/599/pfu599/lib/python/cdat_lite-6.0rc2-py2.6-linux-x86_64.egg

Optional Environment variables:
APP_CHAMPIONS_DIR:
Location of directory containing champions files (see Section 5.3.3). Default:
trunk/database/champions

APP_EXPERIMENTS_TABLE:
Name of csv file that specifies the setup of experiments. This file must be in the folder
trunk/database/. Defaults to experiments.csv

APP_DATABASE:
Location of database file. Defaults to trunk/database/app.db

2.4 Ancillary Files

The ancillary files should be put in the directory: ${APP_OUTPATH}/CMIP5/ancillary_files,
where $APP_OUTPATH is the environment variable defined in Section 2.3. If an ancillary file
is changed, then the code in app_funcs.py will need to reflect the changed filename or variable
names within the file.

To set this up, you can copy the ancillary files from
dcc:/ /projects/p66/pfu599/CMIP5/ancillary_files/

(or request these files from Peter Uhe if you lack permissions).

If the model configuration changes different files will need to be generated to replace the
current ancillary files. The functions that use the ancillary files may also need to be modified to
handle this.

The following functions in app_funcs use ancillary files to specify information about the access
grid, or time invariant quantities:

getBasinMask(), getOrog(), get_vertices(), oceanFrac(), iceTransport(), areacella(),
getHybridLevels() (this doesn't use ancillary files, but the hybrid levels are hard coded into the
function.)

6 ACCESS Post-Processor Version 1.0 • November 2012

3 PRE (POST)-PROCESSING

Before running the APP on ACCESS model output, the output needs to be arranged to follow
the directory structure described in Section 6.1, which has atmospheric (atm), ocean (ocn) and
sea-ice (ice) diagnostics in separate folders.

In addition, the raw UM output must first be converted into NetCDF format. The file names
expected by the APP are as follows, so the um2netcdf scripts have been configured to produce
output in this form:

Monthly: <experiment_directory>/atm/netCDF/*_mon.nc
Daily: <experiment_directory>/atm/netCDF/*_dai.nc
6 hourly: <experiment_directory>/atm/netCDF/*_6h.nc
3 hourly: <experiment_directory>/atm/netCDF/*_3h.nc

A future version of the UM may allow for the direct writing of NetCDF files alleviating the
need for this processing step. The following section describes the scripts used to perform this
conversion.

3.1 um2netcdf.py

This script is found at: svn:trunk/um2netcdf/um2netcdf.py,

The script um2netcdf.py reads in a single UM data file, and outputs a NetCDF file with the
corresponding data. The UM output are binary files in which each variable has a unique
identifier called a stash code. The um2netcdf script uses the file trunk/um2netcdf/stashvar.py to
map the stash codes to the variables. It also can add basic metadata that may be missing in the
UM file. If a new output variable is added that is not listed in stashvar.py, this may need to be
updated for the output to be converted to NetCDF format correctly.

Running the um2netcdf.py requires the CDAT_LOCATION environment variable to be set.
There have been problems using standard CDAT libraries on NCI NF computers; this allows us
to specify the location of libraries that are known to work correctly with all output.

3.2 runUm2netcdf.py

This script is found at: svn:trunk/um2netcdf/runUm2netcdf.py, It is a wrapper script calling
um2netcdf.py for post-processing multiple files in a directory.

It can read environment variables to determine the files to be converted:
ifile= Input files (Wildcards are used to specify multiple files)
syear=Start year (extracted from the file name)
eyear=End year (extracted from the file name)

The runUm2netcdf.py script recognises the type frequency of data from the identifiers used in
the file name. The conventions used by the ACCESS coupled model are:

pa → _mon.nc

 7

pe → _dai.nc
pi → _6h.nc
pj → _3h.nc

The script has been set up to be submitted as a batch job to PBS. An example submission script
is at svn:trunk/um2netcdf/run.sh. Note that this script relies on the naming conventions used by
the ACCESS coupled model and will need to be modified to work for different output.

8 ACCESS Post-Processor Version 1.0 • November 2012

4 RUNNING THE APP

The main steps in running the APP for an ACCESS experiment, once the APP has been
correctly installed are:

1. Run the um2netcdf tool and make sure the model output conforms to the required
directory structure.

2. Set-up the 'experiments' table for the configuration of the model run (see Section 5.3.1).
An example file is svn:trunk/database/experiments.csv

3. Populate the database by running the file: trunk/database/database_manager.py

4. Run the app_wrapper (see Section 5.2), specifying which parameters to process (either
by modifying the file, or by using environment variables). This can be submitted to the
queue using a batch script such as trunk/run.sh

5. For publishing of the data locally or publicly via the Earth System Grid (ESG),
additional steps are required beyond the running of the APP.

 Running drs_tool, to change the directory structure to comply with DRS (Taylor,
2011a). (Appendix A).

 Run the QC tool (Quality Control level 2 check) to report warnings/errors
regarding problems found in the CMIP5 output. (Appendix B).

4.1 Modifications / Customisation of the APP

Alongside Step 2, the Champions tables, and the grids table may need to be modified to reflect
changes to the output parameters or diagnostics, or if calculations of different diagnostics are
required (see Section 6).

Unsolicited data can be produced by defining new CMOR tables. e.g. trunk/cmip5-cmor-
tables/Tables/CMIP5_AmonExtras. The simplest way to produce these variables is to follow the
format in one of the official CMIP5 tables. Note that the line 'product: output' must be modified
to 'product: unsolicited' for these extra CMIP5 tables. APP champions tables then need to be
produced for the unsolicited data in the same way as for CMIP5 requested output (see section
6). The one modification is that the column 'implemented in post-processor' must have
'unsolicited'.

For CMIP5, some output parameters are not required for all experiments, or for all time periods
of specific simulations. The database_manager only populates the file_master database table
with entries corresponding to files within the requested time ranges. To change what times are
specified, modifications can be made to database_manager.py before running Step 3 (explained
in Section 5.4).

 9

4.2 Post Processor Output:

The output data is written to the directory:

${APP_OUTPATH}/CMIP5/output

following the directory structure that CMOR uses, e.g.

<$APP_OUTPATH>/CMIP5/output/CSIRO-BOM/ACCESS1-
0/historical/mon/atmos/tas/r1i1p1

The plots generated by the app_wrapper are written to:

${APP_OUTPATH}/CMIP5/plots/<local_experiment_name>/<CMIP5_Table>

The output log files that are generated when submitting a PBS job via the trunk/run.sh script are
written to:

<$APP_OUTPATH>/CMIP5/job_output/<local_experiment_name>/<CMIP5_Table>

10 ACCESS Post-Processor Version 1.0 • November 2012

5 COMPONENTS OF THE APP

5.1 APP Core

The core of the Access Post Processing system is app.py (Access Post-Processor Python script).
This is a Python script that may either be called from the command line or by another Python
program. It takes a number of command line arguments (or a dictionary of these arguments
when called as a Python routine) specifying the data needed to post-process a specific variable
and output a single CMIP5 file.

It is possible to use the APP without using the database and APP Wrapper, but this is not
recommended. There are a large number of input arguments, and while not all of them are
necessary for every application, the APP Wrapper provides a more reliable and convenient
interface.

app.py uses the CMOR2 library to write out the NetCDF files. This uses the CMOR CMIP5
variable tables to fill in a large proportion of the output file's attributes automatically. Details of
attributes that are specific to the set up of the ACCESS coupled model or a particular
experiment need to be passed to CMOR and are given as arguments when running app.py.

Main steps in the app.py:

1. Set up global attributes of the output file

2. Find all the input files, checking their time values and make a list of files that fall within
the time range of the output file.

3. For the output variable, find the axes information for the relevant dimensions. Fill in
any missing information that is required (time and space bounds, correct coordinate
values, units, etc.)

◦ For cases where the output variable has different dimensions to the variable
used in the input files, modify the dimensions as appropriate (remove axis,
create new axis, change values). Some of these operations are specified
using the “axes_modifier” argument (see Section 6.3).

4. Write out the values of the variable from each of the input files to the output file.

◦ In some cases there will need to be calculations performed using multiple
input variables to give the value of the output variable. This is handled by
calling functions in the file app_funcs.py, the function being specified by
the input argument “calculation”, set up in the Champions table (see
Section 5.3.3).

 11

5.2 APP Wrapper

The file app_wrapper.py is a wrapper script for the APP, which selects entries in the database
and then calls app.py to initiate processing.

It can be called with environment variables set:

N: Maximum number of database rows (entries) to process.

- If this is not set, the number of rows to process is specified by the variable 'n' in the
function main()

Table (CMIP5 table) and Exp (local_experiment name) are required together.

- When called with these environment variables set, the APP Wrapper processes up to N
rows that have status='unprocessed' and meet the criteria that, cmip_table= 'Table' and
local_experiment='Exp' in the 'file_master' table of the database.

 If 'Table' and 'Exp' aren't set, a default command to select rows of the file_master
database table will be executed. This is specified by the variable 'select' in the function
main(). An example of the select string is:

select = ' frequency ==\'mon\' and experiment_id==\'historical\' and status==\'unprocessed\' '

This will process up to n files of monthly data from the historical run that hasn't already been
processed.

After it selects the database rows, the APP Wrapper updates the status of these rows to
'processing'. Since the APP Wrapper by default selects only rows with status='unprocessed', this
acts as a lock on those database rows.

After calling app.py, the app Wrapper updates the database, depending on the outcome of the
processing. For each output file created, a diagnostic plot is generated of the relevant parameter
it represents.

Flags (variables in main() which can be modified):

overRideFiles: specifies whether to skip processing if the file exists already (default=False).

plot: specifies whether to plot after processing or not (default=True).

12 ACCESS Post-Processor Version 1.0 • November 2012

5.3 Database

The database consists of three configuration tables, which are used to populate the 'file_master'
table which drives the APP. There is an 'experiment' table, containing all the experiment
configuration information. There is a 'grids' table that contains mapping information between
dimensions and grid points. This is also used to determine the file block size (maximum number
of years to have in one file). Lastly there is a 'champions' table which represent the information
about producing CMIP5 parameters from the ACCESS model output.

Each of these tables is generated by reading in comma-separated files. The champions table is
generated from a set of champions files, separated into files by CMIP5 table (Taylor 2011).

5.3.1 Experiment Configuration Table

The experiments database table provides information to process the experiment and metadata
about each experiment (Table 1). Each CMIP5 experiment ensemble member (Taylor et al.
2011b), requires a separate entry in the experiments table.

The start and end years restricts the time range of the post processing which may not be the full
extent of the model output.

The file that the database reads to set up the experiments configuration table can be specified by
setting the environment variable $APP_EXPERIMENTS_TABLE before running the
database_manager.py. The file $APP_EXPERIMENTS_TABLE is located relative to the
database folder e.g. 'experiments_example.csv' will point to the file
trunk/database/experiments_example.csv

Table 1. Experiments Database Table Fields.

Field Description

experiment_id experiment id e.g. piControl, historical

experiment_directory base directory of model output

start_year start year of model run

end_year end year of model run

realization realisation number of the experiment

initialization initialisation number of the experiment

physics_version physics version number of the experiment

local_experiment name A name used locally to identify the experiment

model name model name. e.g. ACCESS

forcing string describing experiment forcings present

 13

parent_id experiment ID of parent

parent_rip RIP of parent

branch time time in parent experiment that the current experiment was branched

land model which land model was used: CABLE or MOSES

Notes any additional notes

Note that the experiment_id and forcing strings are restricted to using prescribed values as
defined in Taylor2011a.

5.3.2 Grids Table

The main purpose of the grids table is to specify the amount of data in each file (maximum
number of years). This is determined from the spatial dimensions of the parameter and the
frequency of the data. This chunking of parameters into multiple files is required to prevent files
becoming too large. The 'max years' is chosen to minimize the number of files while keeping
the size within a reasonable limit. The grids table also provides the information needed to
produce an estimate of the file sizes.

Table 2. Grids Database Table Fields.

Column Description

frequency frequency: mon, day, 6hr, 3hr, monclim

dimensions string describing dimensions (Table 3)

gridpoints number of spacial grid points (includes points for pseudo levels, basins etc)

max years The number of years one file will hold for these parameters

Notes notes

file_size (MB) (not used by the app or database), useful for determining maximum years

Table 3. Dimension Identifiers.

dimension_id description

Scalar scalar time series

2Datmos Atmos grid- 145*192

2Docean 300*360 ocean grid

3Docean Ocean grid with 50 vertical levels

14 ACCESS Post-Processor Version 1.0 • November 2012

3Dm Atmos grid with 38 (model) height levels

3Dp17 atmos grid with 17 pressure levels

oline dimension for different ocean straits

2Db_rho Ocean grid: Lat+ rho depth(80 levels) +3 basins

2Db Ocean grid: Lat+ depth +3 basins

1Db Ocean grid: Lat+3 basins

3Dtile9 Atmos grid with 9 tiles for moses

3Dsoil4 Atmos grid with 4 soil levels for moses

3Dtile17 Atmos grid with 17 tiles for cable

3Dsoil6 Atmos grid with 6 soil levels for cable

3Dp8 Atmos grid with 8 pressure levels

3Dp3 Atmos grid with 3 pressure levels

5.3.3 Champions Table:

“Champions” is the name of the database table used to provide the relevant data needed to
process each variable. This name was given for historical reasons to the files produced under
direction of the champions group (see acknoledgements). This table can be thought of as a
configuration table of CMIP5 variables and their calculations.

Each CMIP5 table has one (or more) Champions files associated with it (see Table 4). In the
cases where variables in the same CMIP5 table are requested for different time periods in
experiments, they can be put into different champions files. The database table has an additional
column champions_group which specifies which file the variables has come from. For example
day_all contains fields from the CMIP5 table 'day', that are requested for all times, but
parameters in day_limited are only requested for certain times of each experiment (because they
are lower priority or take up more disk space).

Different champions groups are also used for parameters which require different calculations
between the CABLE and MOSES versions of ACCESS. The Lmon CMIP5 table is split up
between Lmon_both, Lmon_cable, and Lmon_moses. Lmon_both contains parameters requiring
the same treatment in both CABLE and MOSES. Lmon_cable and Lmon_moses contain
parameters that are handled differently for the two land schemes.

 15

Table 4. List of Champions Files.

CMIP5 table Champions file (champions group has '.csv' removed)

3hr 3hr_limited.csv

3hr 3hr_limited_cable.csv

3hr 3hr_limited_moses.csv

6hrLev 6hrLev_limited.csv

6hrPlev 6hrPlev_limited.csv

Amon Amon.csv

Amon Amon_limited.csv

LImon LImon_both.csv

LImon Limon_cable.csv

LImon Limon_moses.csv

Lmon Lmon_both.csv

Lmon Lmon_cable.csv

Lmon Lmon_moses.csv

OImon Oimon.csv

Oclim Oclim.csv

Omon Omon.csv

Aero aero.csv

Day day_all.csv

Day day_limited.csv

Day day_limited_cable.csv

Day day_limited_moses.csv

Fx fx.csv

Fx fx_moses.csv

Fx fx_cable.csv

16 ACCESS Post-Processor Version 1.0 • November 2012

For experiments with different diagnostics, these Champions files can be modified. The
environment variable $APP_CHAMPIONS_DIR specifies the directory containing the
Champions files, allowing different sets of Champions files to be used (for example, different
champions files may be used for processing output from the Australian Community Ocean
Model, AusCOM, Bi et al 2010). The format to specify variables using the Champions tables is
explained in Section 6.

5.3.4 File Master Table

The File Master table is a table that encapsulates the data required to generate the CMIP5 files.
One row in this table corresponds to one CMIP5 file and each column corresponds to one of the
arguments that are passed to app.

Some of the variables in the File Master table are not used by the app.py, but may be used by
the app_wrapper to specify a specific set of entries to process. E.g. Entries with
status=unprocessed can be selected but status is not passed to app.py.

Table 5. File Master Database Table Fields.

Field Description

experiment_id Experiment I.D. e.g. piControl, historical etc.

model_id Model I.D. e.g. ACCESS1-0, ACCESS1.3

realization Realisation number of ensemble

initialization_method Initialization method number of ensemble

physics_version Physics version number of ensemble

infile String of input files

outpath Base of output directory. e.g. /projects/p66/pfu599/

file_name Expected name of output file

vin List of input variables

vcmip Name of CMIP5 variable to process

cmip_table CMIP5 table of variable.

realm Realm of variable (not used by app.py)

frequency Frequency of variable sampling

tstart Start time of output file (year)

tend End time of output file (year)

tref Not used, (the reference time is determined from input files)

priority Used for information about which variables to publish (not used by app.py).

status String specifying the processing status of the variable. e.g. unprocessed,
processed. (not used by app.py)

file_size Estimated size of output file

dimensions Dimension identifier, see Table 3 (not used by app.py)

local_experiment Local experiment identifier (not used by app.py)

calculation String used to calculate vcmip from vin

 17

axes_modifier String to specify modifications in the axes between vin and vcmip

in_units Override the output unit to a specified string

positive Override the positive attribute in the output.

18 ACCESS Post-Processor Version 1.0 • November 2012

5.4 Database Manager

The APP database is populated in the database_manager.py script.

It reads in the Champions files, and experiment table and grids table and writes them into tables
in the database app.db. It then uses these tables to create a list of entries in the database, each
entry corresponding to one file of CMIP5 output.

To determine the list of files, the database_manager takes the experiment start, end times and
other experiment data, as well as the “chunking size” of variables on different grids (prescribed
in the grids table for each dimension_id). It loops over each variable in the champions database
table and populates the file_master database table with entries corresponding to files within the
time periods requested for CMIP5 (see standard output document; Taylor, 2011).

5.4.1 Modifying database_manager.py

The database_manager.py script has a function populate(), which governs population of the
file_master table with data from the other tables. It doesn't create entries for all variables and for
all times though, as some variables that may take up a large amount of disk space are only
requested to be produced for certain times in CMIP5. The Champions files have been split up
into files with different “champions_groups”, which may be requested for particular times.

The functions to add rows to the file_master use either:

populateRows(rows,opts,cursor):

 -Takes list of rows in Champions database table, loops over each row, loops over all
times in an experiment and add rows into the file_master table.

populateLimited(rows,opts,startLim,endLim,cursor):

 -Same as populateRows, except only adds rows into file_master for times between
startLim and endLim.

By adding in SQlite commands to select entries of the database followed by a call to
populateRows/populateLimited, you can modify which parameters are produced for what times.

The following functions (called within function populate()) are examples that select database
rows from the champions database table, for different variables and call one of the above
functions to populate the file_master database table.

populate_unlimited(cursor,opts)

 -populates parameters requested for all times (calls populateRows())

populate_day_limited(cursor,opts)

 19

 -populates parameters for 'day' CMIP5 table, requested for limited set of times (calls
populateLimited())

There are other functions similar to populate_day_limited to populate the database for other
CMIP5 tables (populate_6hrLev, populate_6hrPlev, populate_Oclim,populate_3hr)

5.5 APP Functions

The file app_funcs.py contains a set of functions which are used by other parts of the APP. The
functions in app_funcs.py serve a few different purposes. The first set of functions specify grid
information that may be read from ancillary files. Other functions specify the calculations of
specific parameters where the derivation is not a simple calculation that can be expressed in a
single line. There are a few other functions used by app.py or app_wrapper such as the plotting
function.

20 ACCESS Post-Processor Version 1.0 • November 2012

6 SPECIFYING VARIABLES IN CHAMPIONS FILES

The following section describes the purpose of different columns in the champions
configuration files. The champions configuration files are comma-separated files that determine
the configuration of the post-processor for each variable. The fields in the champions files are
passed into the champions database table, with the addition of the cmip_table and
champions_group, which are determined from the name of the champions file (e.g.
cmip_table=Lmon and champions_group=Lmon_moses for variables in the file
Lmon_moses.csv).

Table 6. Champions Configuration File.

Column Description

cmip variable Variable name in CMIP5 table

definable in access If the variable can/will be produced

implemented in post
processor

Has this variable been implemented by the post processor

dimensions String describing the dimensions of the variable output

access variable name
List of variables in ACCESS coupled model output used to
produce the CMIP variable (list is separated by spaces)

access file location String describing the path to files containing the access variables

realm modelling realm for the cmip variable

calculation string of python code to calculate the output data

override units
string providing the correct units of the input data after the
calculation

axes override string describing modifications to variable dimension axes

Positive
string describing the positive attribute of the variable ('up' or
'down')

Notes extra notes about the variable

The columns: 'definable' and 'implemented in post-processor' are not used by the post-processor
itself but are useful information which can be used when populating the database or selecting
elements to process in the app_wrapper.

 21

6.1 ACCESS File Location

The ACCESS file location column specifies the path to the model output files, relative
to the “experiment_directory” in the experiments table.
Wildcards are used to encapsulate multiple files (for different times),
E.g. “/atm/netCDF/*_3h.nc” will expand the input file list for all the 3 hourly
atmospheric files in the experiment directory. It will point to the files:
(<experiment_directory>/atm/netCDF/*_3h.nc)

The APP is set up to use the following file layout:

UM output:
Monthly: /atm/netCDF/*_mon.nc
Daily: /atm/netCDF/*_dai.nc
6 hourly: /atm/netCDF/*_6h.nc
3 hourly: /atm/netCDF/*_3h.nc

Sea Ice:
Monthly: /ice/iceh.????-??.nc
Daily: /ice/iceh_day.????-??.nc

Ocean:
Monthly: /ocn/ocean_month.nc-*
Monthly scalar: /ocn/ocean_scalar.nc*
Daily: /ocn/ocean_daily.nc-*

It also assumes that the files are given ordered timestamps in the file names.

6.2 Derivations

Derivations are made using the list of access variables, available as variable 'var' which is a list
of the data arrays matching “access_variable_name”, in the input file. The array of time values
is also available as variable 'times'.

A simple example is a summation of two variables. The CMIP5 variable ‘clw’ is derived from
the sum of ‘clw1’ and ‘clw2’ in the ACCESS coupled model output.

The definition clw=clw1+clw2 is represented in the following way in the Champions table:

Table 7. Calculation of clw.

CMIP5 variable clw

ACCESS model variable name clw1 clw2

Calculation var[0]+var[1]

22 ACCESS Post-Processor Version 1.0 • November 2012

Calculations can also call functions that can perform arbitrary calculations and return the output
data. An example of this is calculating the monthly average of the daily minimum temperatures.

Table 8. Calculation of tasmin.

CMIP5 variable tasmin

ACCESS variable name tasmin

ACCESS file location /atm/netCDF/*_dai.nc

Calculation monthAve(var[0],times)

axes modifier day2mon

Things to note:

The function monthAve is a function in the file app_funcs.py which is imported by app.py

The ACCESS file location: /atm/netCDF/*_dai.nc is used to select the daily sampled
tasmin.

The variable 'times' contains the time information of the files and is used to determine
values to average over for one month.

The axes modifier 'day2mon' is used to modify the time axis from having values every
day to having values every month (see Section 6.3).

 23

6.3 Axes Modifiers.

The axes modifier is a string defining commands to modify axes. This is useful when
calculations are done such as choosing a particular level from (i.e. the surface) or averaging
over a dimension.

Possible commands

 dropX ,dropY, dropZ, dropLev: remove axis (dropLev is used to remove axis for land
surface tiles or other pseudo levels),

 monClim: (monthly climatological averages),

 time1: signifies time snapshots rather than time averages

 day2mon: convert time values from daily to monthly

 basin: add axes for ocean basins

 oline: add axis for ocean lines

 mosesTiles, cableTiles: specify which vegetation tiles are being used

 firsttime: create a time axis that only uses the first time value

 surfaceLevel: Take only the first (surface) level of the atmosphere grid

Multiple commands may be used by writing them as a list.

24 ACCESS Post-Processor Version 1.0 • November 2012

ACKNOWLEDGMENTS

Thank you to everyone who has contributed to the development of the APP.

Champions (configuration of champions files and determining calculations of CMIP5
variables): Harun Rashid, Julie Noonan, Lauren Stevens, Petteri Uotila, Simon
Marsland.

Thanks to Holger Wolff and Harun Rashid for their help with the UM stash output.

Thanks to Harun Rashid and Martin Dix’s contribution to the development of the
um2netcdf scripts.

This work has been undertaken as part of the Australian Climate Change Science
Program, funded jointly by the Department of Climate Change and Energy Efficiency,
the Bureau of Meteorology and CSIRO.

This work was supported by the NCI National Facility at the ANU.

 25

REFERENCES

Bi, D. and Marsland, S. 2010. Australian Climate Ocean Model (AusCOM) Users Guide,
CAWCR Technical Report, No. 27, 74pp.

Bi, D., Dix, M., Marsland, S., O’Farrell, S., Rashid, H., Uotila, P., Hirst, T., Kowalczyk, E.,
Golebiewski, M., Sullivan, A., Yan, H., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou,
X., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Harris, C., Griffies, S. and K. Puri,
2012. The ACCESS Coupled Model: Description and Control Climate, Submitted to the Aust.
Met. And Ocean. Journal.

Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C.D.,
Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S.,
Reichler, T. and Kim, J.2008. Evaluation of the HadGEM2 model. Met Office Hadley Centre
Technical Note no. HCTN 74, available from Met Office, FitzRoy Road, Exeter EX1 3PB
http://www.metoffice.gov.uk/publications/HCTN/index.html

Doutriaux, C. and Taylor, K.E. 2012. Climate Model Output Rewriter (CMOR) Version 2.0.
Available from http://cmip-pcmdi.llnl.gov/cmip5/docs/cmor2_users_guide_KET3_clean.doc

Griffies, S.M., Harrison, M.J., Pacanowski, R.C. and Rosati, A. 2004. A Technical Guide to
MOM4, GFDL Ocean Group Technical Report No. 5, Princeton, NJ:: NOAA/Geophysical
Fluid Dynamics Laboratory, 342 pp.

Hunke, E.C. and Lipscomb, W.H. 2010. CICE: the Los Alamos Sea Ice Model Documentation
and Software User’s Manual Version 4.1, 76pp. Available from
http://oceans11.lanl.gov/trac/CICE/attachment/wiki/WikiStart/cicedoc.pdf

Kowalczyk, E.A., Wang, Y.P., Law, R.M., Davies, H.L., McGregor J.L. and Abramowitz, G.
2006, The CSIRO Atmosphere Biosphere Land Exchange (CABLE) Model for use in climate
models and as an offline model, CSIRO Marine and Atmospheric Research Paper 013

Redler, R., Valcke, S. and Ritzdorf, H. 2010. OASIS4 – a coupling software for next generation
earth system modelling, Geosci. Model Dev., 3, 87–104.

Taylor, K.E. 2011. Standard Output Document. 167pp. Available from http://cmip-
pcmdi.llnl.gov/cmip5/docs/standard_output.pdf.

Taylor, K.E., Balaji, V., Hankin, S., Jukes, M., Lawrence, B. and Pascoe, S. 2011a. CMIP5
Data Reference Syntax (DRS) and Controlled Vocabularies. 14 pp. Available from http://cmip-
pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_ syntax.pdf.

Taylor, K.E., Stouffer, R.J. and Meehl, G.A. 2011b. A Summary of the CMIP5 Experiment
Design. 33pp. Available from
http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.

26 ACCESS Post-Processor Version 1.0 • November 2012

APPENDIX A: DRS TOOL

The drs_tool is a tool that reads in a directory of CMIP5 files generated by CMOR and renames
the files and directory structure to meet the DRS naming conventions. This is done as a last step
in the post-processing before publishing.

Website and installation:

See http://esgf.org/esgf-drslib-site/ for documentation and information on installing drslib
(drs_tool is part of drslib)

Running on dcc:

Use the following commands to load required modules.
$module use /projects/r87/public/modulefiles
$module load python/2.7.1 python-drslib
$module load python-setuptools

Then run the drs_tool list command. This lets you check to see if it is going to work before
trying to convert to DRS format.
Example:
$drs_tool list -v 20111102 -R /short/p66/pfu599/drs_output/drs_output_11_29 -I
/short/p66/pfu599/CMIP5/output/ cmip5.output1.CAWCR.ACCESS1-0.%.%.%

When you want to convert, run the same command, replacing 'list' with 'upgrade'.

This command will move all the CMIP5 files in /short/p66/pfu599/CMIP5/output/ into DRS
compliant format in the folder /short/p66/pfu599/drs_output/drs_output_11_29.

note: -v 20111102 forces the version number (This allows us to match the file structure version
number with the file attributes).

A script to only copy specific variables into the DRS output folder is located at
trunk/move_to_published.py.

 27

APPENDIX B: QC CHECKING

Quality control sets is important to verify the quality of the datasets to be published. There
are three stages of quality control
(see https://redmine.dkrz.de/collaboration/projects/cmip5-qc/wiki for more detail):

 QC Level 1 (QC L1)

QC L1 requires the files to meet the CF (Climate and Forecast) metadata conventions
and some extra CMIP5 metadata requirements. Output formatted by CMOR should
automatically satisfy these requirements.

 QC Level 2 (QC L2)

QC L2 is passed by running a tool
(see http://proj.badc.rl.ac.uk/go-essp/wiki/CMIP5/QualityControl#QualityControl)
which checks metadata and runs consistency checks on the data. The results are
compiled in a central database. The QC L2 check is run alongside publishing the data
to the ESG.

 QC Level 3

Assigned to files after further analysis and cross-checking of the data and metatdata.
These datasets are assigned DOI’s and can be cited.

