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INTRODUCTION 

Ocean-atmosphere interactions are key processes that drive seasonal climate variability. In 
the global sense, the atmosphere drives the upper ocean via heat flux, fresh water flux and 
wind stress (Anderson 2008). But in the tropics where the ocean surface temperature 
(hereafter, sea surface temperature, SST) is warm enough to trigger deep atmospheric 
convection, the ocean exerts strong controls on the atmosphere especially at longer time 
scales because of its slow variations and strong thermal inertia. Consequently, the highest 
predictability of atmospheric climate (e.g. temperature and rainfall) on seasonal timescales 
is found predominantly across and directly surrounding the tropical ocean basins and in 
those extratropical regions of the globe that are directly influenced by atmospheric Rossby 
waves which are excited by variations of tropical deep convection that develop in response 
to variations in tropical SST (e.g. Hoskins and Schopf 2008).  
 
The most dominant mode of tropical SST variability that is involved in global-scale ocean-
atmosphere interactions and teleconnections, especially to Australian climate, is the El 
Niño-Southern Oscillation (ENSO). The typical SST pattern associated with the warm 
phase of ENSO (i.e. El Niño) is displayed in Fig.1a, which shows the regression of SST 
(right panel Fig. 1a) onto the time series of the Nino3 SST index1 (left panel Fig. 1a).  This 
canonical ENSO accounts for about 65% of the total variance of tropical Pacific SST on 
seasonal time scales. The second dominant mode of tropical Pacific SST variability, which 
is known equivalently as Modoki El Niño, central Pacific El Niño, or warm-pool El Niño, 
explains about 10% of the total SST (Fig. 1b). Here we use the El Niño Modoki SST index 
(EMI; Ashok et al. 2007)2, which is a proxy for the second EOF of tropical SST, to monitor 
Modoki El Niño. Despite accounting for much less total variance than canonical ENSO, the 
Modoki El Niño has as large or larger impacts on regional climate especially in Australia 
(Kumar et al. 2006, Ashok et al. 2007, Wang and Hendon 2007, Kim et al. 2009, Hendon et 
al. 2009).  
 
In the Indian Ocean, the first dominant mode of the SST variability during late winter to 
spring season is the Indian Ocean Dipole mode (IOD; Saji et al. 1999). Figure 1c shows the 
regression of SST onto the Dipole Mode Index (DMI)3, which was defined by Saji et al. 
(1999) to monitor the IOD. The IOD highly covaries with ENSO especially in spring (as 
evidenced by the clear indication of El Niño conditions associated with positive IOD in 
Fig. 1c), and is best understood as a key component of the evolution of ENSO (e.g., 
Hendon 2003; Dommenget 2010). Although the variations of the IOD that are independent 
of ENSO are smaller than those associated with ENSO, the sensitivity of Australian climate 
to SST variations in the Indian Ocean is high, so the smaller independent variations of the 
IOD  are as important to Australian climate as are those that vary dependently with ENSO 
(e.g. Lim et al. 2009a). This is especially true in winter when the association of the IOD 
with ENSO is weaker than that in spring (e.g. Cai et al. 2011a).  
 
Successful prediction of seasonal variations of regional climate depends primarily on i) the 
strength of the teleconnection between the regional climate and dominant modes of tropical 
SST variability, ii) a forecast system’s ability to predict the dominant modes of SST that 
drive the  regional teleconnection, and iii) the forecast model’s ability to produce the 
teleconnections. Australian seasonal climate is primarily impacted by ENSO, El Niño 
Modoki, and the IOD (e.g. McBride and Nicholls 1983, Wang and Hendon 2007, Meyer et 
                                                      
1 NINO3 index = SST (90°W-150°W, 5°S-5°N) 
2 EMI = SST  (165°E-140°W,10°S-10°N) – 0.5* SST  (70°W-110°W,15°S-5°N) – 0.5* SST  (125°E-145°E,10°S-20°N) 
3 DMI= SST  (50°E-70°E, 10°S-10°N) – SST  (90°E-110°E,10°S-0°) 
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al. 2007, Hendon et al. 2009; Cai et al. 2011a). Therefore, skilful prediction of these 
dominant modes of tropical Indo-Pacific SST variability and a good representation of their 
teleconnection to Australian climate are prerequisites for skilful prediction of Australian 
climate.   
 
The aim of this study is to assess the progress of the POAMA seasonal forecast system for 
improved prediction of Australian climate from the perspective of the prediction and 
representation of these key climate drivers and their teleconnections. The POAMA system 
is continuously being developed, with the most recent advances of the POAMA2 system 
being a new ocean data assimilation system, increased ensemble size, and running multiple 
versions of the model to better account for model error. A key focus of this study is thus 
the comparison of forecasts from the new POAMA2 system to the previous version. 
Although model improvement is the ultimate path toward improved prediction of regional 
climate, we also explore the benefit of post-processing the forecasts (calibrating) in order to 
improve reliability of rainfall forecasts over Australia.  Furthermore, to shed light onto the 
progress of the POAMA system development, we also compare POAMA performance to 
some other contemporary dynamical model forecast systems that have contributed to the 
EU ENSEMBLES project (Weisheimer et al. 2009). Finally, to explore the  benefit of a 
true multi-model ensemble for Australian rainfall forecasts, we develop and assess a multi-
model ensemble forecast by combining forecasts from a subset of the ENSEMBLEs 
models ( ECMWF, UK Met Office, and Meteo-France) with the POAMA2 forecast 
systems. 
 
The key POAMA2 features that have been upgraded over POAMA1.5, including the 
generation of ocean initial conditions and use of different versions of the model, the 
retrospective forecast (hindcast) products, and the verification data are described in     
section 2. Assessment of i) forecast skill for major climate drivers, ii) impact of reducing 
the model’s mean state SST bias, and iii) forecast skill for SEA rainfall based on POAMA2 
hindcasts are described in section 3. We also include comparison to the ENSEMBLES 
models in that section. Lastly, concluding remarks are provided in section 4. 

1. POAMA2 

The key upgrades of the POAMA2 system over POAMA1.5 are the ocean data 
assimilation, the use of three slightly different versions of the atmospheric model, and a 
larger ensemble.  In POAMA1.5 the ocean initial conditions were produced from the 
POAMA Ocean Data Assimilation Scheme (PODAS). PODAS is based on a univariate 
optimum interpolation (OI) technique of Smith et al. (1991) that assimilates in situ 
temperature observations in the upper 500 m of the ocean (Wang et al. 2002).  Because 
high quality upper ocean initial conditions are key elements for dynamical ENSO 
prediction, a major upgrade has been made to POAMA2 by implementing a state-of-the-art 
ocean data assimilation system called the POAMA Ensemble Ocean Data Assimilation 
System (PEODAS; Yin et al. 2011). PEODAS assimilates not only ocean temperature but 
also salinity and generates ensemble of ocean initial conditions. According to Yin et al. 
(2011), the depiction of the upper ocean in PEODAS is significantly more realistic, 
accurate and dynamically and thermodynamically consistent than that in PODAS. 
Furthermore, because the PEODAS assimilation is based on an ensemble technique, an 
ensemble of perturbed ocean initial conditions is naturally provided for use in ensemble 
forecast generation. 
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The POAMA2 forecasts consist of forecasts from three different versions of the coupled 
model. One version (referred to as P24c) is the same as the model used in POAMA1.5. The 
other two versions (P24a and P24b) use a slightly different version of the atmospheric 
model (different treatments of shallow convection) that leads to a reduced mean state bias 
at longer lead times. However, the mean state bias is not totally eliminated in P24a, so in 
P24b we have taken the additional step of explicitly controlling the mean state drift by flux 
correction.  
 
For each version of the P24 model, 10 ensemble members were initialised on the 1st of each 
month for 1960-2010, and monthly anomalies were computed against the monthly 
climatology. An ensemble mean forecast was obtained by averaging anomalies of all 30 
ensemble members. In contrast, the older P15 system used just 10 ensemble members.  
 
Forecast anomalies were verified against observed anomalies. SST, mean sea level pressure 
(MSLP) and Australian rainfall forecasts were verified against SST analyses from Hurrell 
et al. (2008), MSLP analyses from NCEP2 (Kanamitsu et al. 2002) and rainfall analyses 
from the Australian Water Availability Project (AWAP) monthly gridded rainfall 
(http://reg.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml), respectively.  
 
In this study we focus our interest to the forecasts in 1980-2010 when there is less 
uncertainty in the quality of observational data. This is also the period for which we can 
compare to the POAMA1.5 forecasts. However, we have generated initial conditions and 
produced forecasts with POAMA2 for 1960-1979, and some results for this earlier period 
are provided.   
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2. RESULTS 

2.1 Prediction of climate drivers 

In relation to the variability of Australian rainfall, we examined three SST indices - the 
NINO3 index that depicts SST variations in the equatorial eastern Pacific associated with 
traditional El Niño events that develop in the Pacific cold-tongue, the EMI that captures 
SST variations in the equatorial central Pacific associated with warm-pool (Modoki) El 
Niño development, and the DMI that captures the variation of the Indian Ocean Dipole 
Mode (e.g., Fig 1). Along with the SST drivers, we also assess the impact of the Southern 
Annular Mode (SAM), which represents a latitudinal flip-flop in pressure between the mid- 
and high latitudes of the southern hemisphere (Fig. 1d).  

                   

                                                  

 
 

Fig. 1 (a)-(c) Regression patterns (right) of observed SST onto the observed times series of the 
NINO3, EMI and DMI indices (left) for the period of 1980-2010. (d) Regression pattern of 
observed MSLP (right) onto the observed SAM index  (left) for the same period. 
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Although the SAM is unlikely to provide much predictability at longer lead times  because 
it is primarily an internally generated atmospheric mode of variability (Limpasuvan and 
Hartmann 1999), it does have a significant impact on rainfall in south east Australia 
(Hendon et al. 2007) and therefore can be seen as a primary mechanism that limits 
predictability at longer lead time. In this study the variability of SAM is represented by the 
SAM index4 proposed by Gong and Wang (1999).  
 
We first assess the dominance of these key drivers of rainfall variability in south east 
Australia (SEA) by computing the correlation of these indices with the rainfall at each grid 
point across SEA. We do this in a moving 3 month window and then find the driver that 
accounts for the most variability (strongest correlation) in each 3 month season. The result 
is shown as a colour coded map (Fig. 2).  
 

      

 

Fig. 2 Climate drivers with highest correlation with rainfall at each grid point (left) and correlation of  
NINO3 (green), EMI (blue), DMI (red), and SAM index (yellow) with SEA area-averaged 
rainfall (right) over the period of 1980-2010. 

The IOD is seen in Fig. 2 to be the most dominant driver of rainfall variability over the 
western and southern parts of SEA during winter to spring. According to the study of       
CAI et al. (2011a), SST over the eastern pole of the IOD excites Rossby waves whose 
high/low pressure centre is located over the Great Australian Bight and directly affects 
SEA rainfall. Pressure in the Bight tends to be higher during positive IOD events (cold 
eastern Indian Ocean), hence rainfall is then lower.  The influence of the two different 
types of El Niño – cold-tongue (Nino3) and warm-pool (EMI) El Niño – is distinctive over 
SEA: cold-tongue El Niño dominates rainfall variability over the south eastern part of SEA 
in spring to early summer whereas warm-pool El Niño dominates rainfall variability over 

                                                      
4 SAMI = MSLP  45°S  – MSLP 60°S 
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the north east of SEA in autumn to spring. The SAM is seen to dominate the rainfall 
variability along the east coast and the north west inland of SEA in winter to late spring.   
 
We now assess the ability of the POAMA2 system to predict these key climate drivers. We 
do this by forming the Nino3 index, EMI, DMI, and SAM index with the appropriate 
forecast data from POAMA2 and then verify theses predicted indices against the observed 
indices. POAMA2 demonstrates improved skill to predict both cold-tongue and warm-pool 
ENSO events compared to POAMA1.5 for the same period of hindcasts (1980-2006) at all 
lead times (Figs 3a, 3b). The improvement in predicting cold-tongue ENSO is found 
regardless of forecast start month whereas the improvement in predicting warm-pool 
ENSO is somewhat limited in the forecasts initialised in the second half of the year (Figs 
4a, 4b). In contrast, the prediction of IOD when considered over all start months is less 
skilful in POAMA2 than POAMA1.5 (Fig. 3c). Nevertheless, forecasts initialised in 
September and October, which is the time of year when the IOD matures, have better skill 
in POAMA2 than POAMA1.5 at longer lead times (Fig. 4c). Furthermore, skill to predict 
SST in the eastern pole of the IOD (IODE) is significantly higher in POAMA2 than 
POAMA 1.5 with July to December initial conditions (Fig. 4d). This skill improvement in 
the SST over the eastern pole of IOD is a meaningful achievement as the SST over the 
eastern pole is an important source of Rossby wave excitation that directly impacts rainfall 
across southern Australia (e.g. Cai et al. 2011a).  
 
 (a)                (b) 
 

     
 
(c)                                                                    (d) 
 

    
 

Fig. 3 Forecast skill of key climate drivers Nino3, EMI, IOD, and the SAM. Coloured lines are the 
forecast skill over 1980-2006, and black lines are the forecast skill over 1960-2010. Forecast 
skill is assessed by correlation between forecasts and observation of each index.  
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In addition, we evaluated forecast skill for an extended period from 1960 to 2010 with the 
POAMA2 system (Fig. 3). Forecasts for NINO3, EMI and DMI over the extended period 
of 1960-2010 are found to be not as skilful as forecasts in the last 30 years. This poor 
forecast skill in the earlier 20 years is likely due to the lack of high quality ocean 
observation and atmospheric data in the pre-satellite era.       
 

 

Fig. 4 Forecast skill (correlation between forecasts and observation) difference between 
POAMA1.5 and POAMA2 (POAMA2 minus POAMA1.5) as a function of forecast start time 
and lead time. Pink (blue) colour shading indicates POAMA2 skill to be higher (lower) than 
that of POAMA1.5. 

In this project, we have also made a preliminary investigation of the feasibility of 
predicting the SAM at seasonal timescales (Fig. 3d). As anticipated, forecast skill for the 
SAM is much lower than for the SST modes. However, there is an indication of improved 
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skill in POAMA2 over that in POAMA1.5. Interestingly, SAM skill is also higher for the 
extended forecast period 1960-2010, for which we have no explanation. Although forecast 
skill of the SAM is limited when all start months are lumped together, longer lead forecasts 
of SAM appear feasible by POAMA2 for late spring months (Fig. 5a) due to the 
teleconnection between SAM and ENSO (Fig. 5c; e.g. L’Heureux and Thompson 2006), 
and spring season SAM is predictable with good skill (i.e. correlation with the observed 
SAM greater than 0.4) by POAMA2 with up to 2 month lead time (not shown). 
 
 
(a)        (b) 

    
 
 
(c) 

Relationship between SAM & NINO3 
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Fig. 5 (a) POAMA2 and (b) persistence forecast skill (as measured by correlation) of SAM as a 
function of forecast start time and lead time. (c) Observed correlation between monthly SAM 
and NINO3 in 1980-2010.  
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Also, it is interesting to note that the monthly SAM can be skilfully predicted by POAMA2 
in the first month of the forecasts and is better than a persistence forecast (Figs 5a,b), 
indicating that the POAMA model is able to represent some aspects of the future evolution 
of the SAM that depend on the initial conditions (presumably mainly due to atmospheric 
initial conditions).  
 
The predictability of the key climate drivers of SEA rainfall by POAMA2 are summarized 
in Fig. 6. NINO3 and EMI, which represent the first two dominant modes of tropical 
Pacific SST variability and significantly influence SEA rainfall, can be skilfully predicted 
at least 3 months in advance.  In the case of IOD and SAM, there is a large seasonality of 
forecast skill, but good forecast skill is found in the spring seasons when IOD and SAM are 
important to SEA rainfall as shown in Figure 2.   
 

 
 

 

Fig. 6 Forecast skill (as measured by correlation) for major climate drivers at lead time zero month 
(upper panel) and three months (lower panel). The verification season (3 month mean) is 
along the x-axis. 

2.2 Impact of flux correction 

A common problem with coupled seasonal forecast models such as POAMA is that model 
climate drifts as forecast lead time increases. In the case of POAMA, a tropical-wide cold 
SST bias develops together with a warm SST bias off the west coast of South America, and 
these biases grow rapidly during the first 6 months of the forecast with biases  in the mean 
state SST  ranging from -4° to 6°C  (Figs 7a,d). In terms of seasonal climate prediction, 
these mean state SST biases negatively impact skilful prediction of ENSO by shifting the 
location of maximum SST variability associated with ENSO to the west of the observed 
location, and therefore, hindering the model’s ability to discern different types of ENSO 
events at long lead times (Hendon et al. 2009). Furthermore, the atmosphere and oceanic 
teleconnections of ENSO to the Australian region are negatively impacted by these biases. 
For instance, Lim et al. (2009b) reported that the relationship between ENSO and 
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Australian winter rainfall is oppositely simulated to the observed relationship at lead times 
longer than a couple of months.  
 

 

Fig. 7 SST mean state bias at 0 and 6 month lead times in POAMA1.5, each version of POAMA2 
and the finally configured POAMA2 consisting of the three versions of POAMA2. Blue colour 
indicates predicted climatological SST to be colder than the observed over the period of 
1980-2006. Contour interval is 0.5 °C. 

In POAMA2, cold and warm SST biases are reduced by two distinct approaches. In P24a 
we used a slightly different treatment of shallow convection that resulted in slightly less 
model drift compared to P24c (Fig. 7b). In P24b, which has the same convection scheme as 
P24a, we used an explicit flux correction scheme (Lim et al. 2010) that virtually eliminated 
all of the drift in the surface climate (Fig. 7c). The flux correction effectively reduces the 
cold bias to less than -1°C over the wide tropical Pacific, thereby improving the model’s 
ability to simulate the spatial patterns of different types of ENSO as follows. Figure 8 
shows the ability of P24a (non-flux corrected) and P24b (flux corrected) to simulate the 
observed patterns of SST variability associated with warm-pool and cold-tongue El Niño 
events. The correlation of the observed patterns is only 0.4, which suggests that the two 
types of El Niño are distinctive in terms of pattern. The correlation between the predicted 
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patterns is much higher than the observed in both non-flux corrected and flux corrected 
forecasts, which indicates the model’s ability to simulate these two different flavoured El 
Niño events falls short. Nevertheless, the flux corrected forecasts better distinguish the 
spatial patterns of the two types of El Niño, simulating the pattern of each type of El Niño 
to be closer to its observed counterpart (Figs. 8c,d). For the flux corrected model, the 
pattern correlation between the predicted and observed EMI is higher than the pattern 
correlation between the predicted NINO3 and EMI at least at up to two month lead time 
(Fig. 8d), which implies that warm-pool El Niño patterns are predictable with clear 
distinction from cold-tongue El Niño about two months in advance. This amounts to about 
a month improvement in lead time over the non-flux corrected model.  
   
(a)  

        
                                         
(b)          (c)  

        
      (d)         (e) 

    

Fig. 8 (a) SST patterns of cold-tongue El Niño (left) and warm-pool El Niño (right), (b) pattern 
correlation between cold-tongue and warm-pool El Niños in the observation (dashed line), 
and non flux corrected (p24a; blue line) and flux corrected (p24b; red line) forecasts, (c) 
pattern correlation between predicted and observed cold-tongue El Niño, and (d) the same 
as (c) but for warm-pool El Niño, (e) overlapped plot of (b) and (d).  In (e) the cross point of 
the solid and dashed lines indicates the lead time when the model predicted cold-tongue 
and warm-pool El Niños start to be more alike to each other than to their observed 
counterparts. 
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Meaningful improvements in the teleconnection between ENSO and Australian winter 
rainfall are also found in the flux corrected forecasts. We assess this by computing the 
correlation of Australian rainfall with the Nino3 and EMI indices from the forecasts and 
observations (Figs. 9a,b).  Although the observed historical relationship shows that the 
eastern part of Australia experiences rainfall deficit with the development of cold-tongue El 
Niño during austral winter, the non-flux corrected POAMA2 spuriously simulates rainfall 
surplus during cold-tongue El Niño over most of the continent (Fig. 9a). This bias in the 
ENSO teleconnection tends to get worse with increasing forecast lead time. Also, the 
strong relationship between eastern Australian winter rainfall and warm-pool El Nino in the 
observation is underestimated in the non-flux corrected forecasts after a month from the 
initialisation (Fig. 9b).  
 
Flux correction alleviates these biases by keeping the dry conditions in the east during 
cold-tongue and warm-pool El Niño events at up to 2 month lead times. These 
improvements in the El Niño teleconnection contribute to higher forecast skill for eastern 
Australian rainfall in winter by about 2 month lead time (Fig. 9c).   
 
Flux correction also improves the model’s representation of the mean position and intensity 
of subtropical ridge (STR) over Australia. The position and intensity of the STR is strongly 
tied to rainfall variability in eastern Australia (e.g., Drosdowsky 2005). The influence of 
the STR on rainfall over the southern part SEA (south of 32°S) is demonstrated by the 
correlation of rainfall  with the intensity and position of the STR as provided by the 
Drosdowsky (2005) L-index (Fig. 10a). The correlation with rainfall peaks in winter but is 
strong in late autumn to early spring (see also Cai et al. 2011b). Both non-flux corrected 
and flux corrected forecasts have a bias of STR position that is displaced about 1-2 degree 
equatorward of the observed position in summer to autumn seasons early in the forecasts 
(Fig. 10b). However, the bias in the mean position of the ridge grows significantly in the 
non-flux corrected version as lead time increases. For instance, the predicted STR is 
positioned poleward of the observed during late winter to spring while it is positioned 
equatorward of the observed during summer to early autumn. Furthermore, the predicted 
STR intensity is overestimated during late autumn to spring but underestimated during 
summer in the non-flux corrected version. Although flux correction is unable to eliminate 
all of these biases, it significantly reduces the magnitudes of them at long lead times (4-6 
months). Additionally, prediction of the interannual variations of the STR  intensity and 
position by POAMA2 (assessed by correlation of predicted against observed and shown in 
Fig. 10b as dot/crosses whose size is proportional to the correlation) seems possible only to 
lead times  less than 2 months.  
 
Despite some key benefits of flux correction, the forecasts of ENSO and the IOD from the 
flux corrected model are slightly less skilful than those from the non-flux corrected model 
(Lim et al. 2010). This competing biases/forecast skill from the different versions of the 
model is the key reason we combined the three different versions of POAMA2.  
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(a)    

   

(b)  

 

 (c)  

 

Fig. 9 Correlation of June-July-August Australian rainfall with (a) the NINO3 index and (b) the EMI 
in the observation and in the non-flux corrected and flux corrected forecasts at lead time of 
0-4 months over the period of 1980-2010. (c) Forecast skill (as measured by correlation) of 
winter rainfall at 0-2 month lead time. 
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(a)  

 
 
 
(b) 

 
 

Fig. 10 (a) Observed seasonal cycle of subtropical ridge (STR) mean position (y-axis) and intensity 
(x-axis) and their correlation with the southern part of SEA rainfall (south of 32°S) 
superimposed on the cycle at each season. Blue circle (red open circle with x) represents 
the correlation with STR intensity (position). In the legend the small and big blue circles 
represents 0.4 and 0.6 correlation, respectively, (b)  Representation of STR mean intensity 
and position and prediction skill of the variabilities of STR intensity and position in non-flux 
corrected (upper row) and flux corrected (bottom row) forecasts at lead times of 0, 2, 4, and 
6 months. Solid grey line represents observed seasonal cycle whereas dotted black line 
represents predicted seasonal cycle. Blue circle (red open circle) indicates skill to predict 
STR intensity (position) variability. Dot size is proportional to the magnitude of correlation 
coefficient. The size of the circles in the legend represent 0.4 correlation.  
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2.3 SEA rainfall forecasts 

Rainfall forecast skill is assessed in terms of probabilistic forecasts for rainfall being above 
the median, and the skill is scored with proportion correct (i.e. proportion of correct 
forecasts to the total forecasts; also commonly called hit rates). We deem the forecast 
system to be skilful if it correctly predicts the occurrence of above median rainfall more 
than 55% of the time. Probabilistic forecasts from the models were computed with 9 
ensemble members of POAMA1.5 and of each of the three versions of POAMA2. Final 
POAMA2 probabilistic forecasts were from averaging the three sets of probabilistic 
forecasts from the three versions of POAMA2. We compute the proportion correct in 
sliding 3 month seasons for 0 month lead time (Fig. 11a) and 3 month lead time (Fig. 11b). 
At 0 month lead time SEA seasonal rainfall is skilfully predicted (i.e. proportion correct 
greater than 55%) by both POAMA1.5 (left column in Fig. 11a) and POAMA2 (middle 
column in Fig. 11a) for all seasons except for late autumn (May-July) and summer 
(December-February). The forecasts are skilful out to 3 month lead times for late winter to 
early summer (Fig. 11b). The proportion correct of rainfall forecasts is comparable between 
POAMA1.5 and POAMA2. However, another key aspect of the forecasts is its reliability. 
Reliability refers to the capability of the model to predict forecast frequencies with the 
correct climatological distribution and is assessed with an attributes diagram (Fig. 12).  
POAMA2 is seen to have slightly higher forecast reliability than POAMA1.5, which we 
attribute to the combination of three different versions of the model and the increased 
ensemble size used in POAMA2. Nevertheless, the reliability of POAMA2 forecasts is far 
from being perfect: POAMA2 probabilistic forecasts still demonstrate over-confident 
characteristics (e.g., the forecasts predict occurrences/non-occurrences of above median 
rainfall more often than is observed).  
 
This lack of improved reliability of POAMA2 compared to POAMA1.5 has motivated us 
to explore the benefits of post-processing the forecasts. We do so using the calibration 
technique of inflation of variance (e.g., Johnson and Bowler 2009). This technique adjusts 
the forecast spread of the ensemble in an optimum fashion so that the statistical 
characteristics of each ensemble member are indistinguishable from reality. This technique 
ensures that the variance of the individual forecast members is equal to the observed 
variance but does the adjustment in a fashion that minimizes the root mean square error of 
the ensemble mean forecast.  However, the calibration technique depends on historical 
relationships with observed data, so the application require cross-validation in order to 
provide a true estimate of the value of the technique when applied to future forecast data. 
The generally low correlation between forecasts and observation means that many of the 
benefits of calibration do not survive cross validation.  Nonetheless, Charles et al. (2011) 
have shown some good benefit of calibration when applied to POAMA1.5.  
 
The calibrated POAMA2 forecasts show similar forecast accuracy as the uncalibrated 
forecasts (Fig. 11 third column) – e.g. no systematic change in the proportion correct as a 
result of calibration – but do show  improved reliability out to longer lead times of more 
than 3 months (Fig.12 third column). However, forecast sharpness (the range of forecast 
probability) and resolution (the degree to which different probability forecasts followed by 
different observed outcomes) are, not surprisingly, reduced.  
 
 
 
 
 
 

Deleted:  
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         (a)          (b) 

         

              
 

Fig. 11 Proportion of correct forecasts (expressed in percentage) of predicting seasonal rainfall to 
be above the median in POAMA1.5 (left column), POAMA2 (middle column) and calibrated 
POAMA2 (right column) at (a) LT 0 and (b) LT 3 months. Colour shading is 10% interval. 
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Fig. 12 Attributes diagrams of POAMA1.5, POAMA2 and calibrated POAMA2 forecasts of above 
median rainfall, considering the forecasts over all grid points of SEA for all 12 seasons in 
1980-2006 at LT 0 (upper panels) and LT 3 months (lower panels). Perfectly reliable 
forecasts should line up with the diagonal line. Forecasts in the grey areas are considered to 
be reliable as they are correct in predicting the occurrence/non-occurrence of an event (in 
this study, above median rainfall) and their errors are smaller than a climatological forecast. 
The size of dots represents forecast frequency in each probabilistic forecast category.   

2.4 Comparison with ENSEMBLES and a true MME 

Finally, we compare the POAMA2 forecasts to some of the models that contributed to the 
ENSEMBLES project (Weisheimer et al. 2009) in order to see where POAMA2 sits in 
comparison with other state-of-the-art seasonal forecast models. This comparison will 
highlight common problems, flag where POAMA is lagging behind and can also be used to 
assess the benefit of a real multi-model ensemble for Australian rainfall forecasts.  Six sets 
of 9 member ensemble hindcasts from different European seasonal forecast systems were 
available on the ENSEMBLE website (http://www.ensembles-eu.org/). The hindcasts were 
initialised on the first day of February, May, August and November and ran for 6 months. 
For the current study, we chose forecasts from the ECMWF system3, UK Met Office 
HadGEM2-A, and Meteo-France ARPEGE4.6 to compare with POAMA2 for their forecast 
skill for SEA rainfall. These three systems contribute to the real-time EUROSIP project 
and so are indicative of the capability of current real-time system used in the EU. We 
analysed 1 month lead forecasts to predict the four main seasons – Mar-May, June-August, 
September-November, and December-February.  
 
(a) 
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          (b) 

 
 

Fig. 13 (a) Proportion of correct forecasts  and (b) attributes diagrams of predicting seasonal rainfall 
over SEA to be above the median in ECMWF system3, POAMA2, calibrated POAMA2 and a 
multi-model ensemble system consisting of POAMA2, ECMWF, UK Met Office, and Meteo-
France forecast systems at 1 month lead time. 

Our investigation of the ENSEMBLES models suggests that the ECMWF system3 has 
higher skill in predicting SEA rainfall than any single version of POAMA2  (Langford and 
Hendon 2011). But the single versions of POAMA2 are as good or better than any of the 
other models. However, the full 27 member ensemble of POAMA2 has comparable skill or 
even slightly higher skill than ECMWF system3 over the SEA region in terms of 
proportion correct (Fig. 13a). Also, the POAMA2 forecasts for above median rainfall for 
the major four seasons are highly reliable in the range of probabilities between 20-70% 
probabilities, and POAMA2 forecast reliability is stretched further by calibration (Fig.13b).  
 
The benefit of a true multi-model ensemble was explored by combining the forecasts from 
POAMA2, ECMWF, UK Met Office and Meteo-France. As shown by the proportion 
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correct for above median rainfall (Fig. 13a), the MME is the best system compared to both 
POAMA2 and ECMWF system3. Furthermore, the MME approach greatly improves 
forecast reliability (Fig. 13b). But a key additional benefit of the MME is that reliability is 
improved without loss of resolution and sharpness, and so the MME is a significant 
improvement over calibration of a single model. This benefit of the MME occurs because 
independent information from each model is added to the forecast system (Stephenson et 
al. 2005; Doblas-Reyes et al. 2006).  Therefore, a key conclusion of this assessment is that 
given the current capability of dynamical models, a MME approach seems the best way of 
improving seasonal forecast skill and quality for Australian rainfall over SEA. 

3. CONCLUDING REMARKS 

Our investigation shows that the POAMA2 system has improved skill in predicting 
variability of different types of ENSO and SST in the eastern pole of IOD, which is 
strongly associated with SEA rainfall variability in winter and spring.  We attribute this 
increase in skill over the POAMA1.5 system to the improved ocean initial conditions 
provided by the PEODAS ocean assimilation system. 
 
We showed some benefit of reducing the model’s mean state SST bias in one version of 
POAMA2 (P24b). The reduced mean state bias improved the simulation of spatial patterns 
of cold-tongue and warm-pool El Niños and the representation of their teleconnection on 
Australian winter rainfall. Although forecasts from the flux corrected model P24b 
demonstrate improved performance for representing key atmospheric teleconnection, the 
predictions of ENSO and the IOD from P24b are not as skilful as those from the non-flux 
corrected versions. Therefore, the final version of POAMA2 consists of both a flux 
corrected and non flux corrected versions in order to incorporate the benefits of flux 
correction to the forecasts without lowering the prediction skill of ENSO and IOD too 
much.  
 
Forecast skill of SEA seasonal rainfall from POAMA2 is comparable to the skill of 
POAMA1.5 for the proportion correct of rainfall exceeding the median, but POAMA2 
forecasts show slightly better reliability than POAMA1.5 due to the increased ensemble 
size. Forecast reliability can be further improved by calibrating the forecasts with an 
inflation of variance technique. This technique significantly improves forecast reliability 
without reducing forecast accuracy but at the expense of loss of forecast resolution and 
sharpness. 
 
Assessment of some contemporary seasonal forecast systems in Europe demonstrates that 
the POAMA2 system is on par with the other state-of-the-art systems. In particular, 
POAMA2 has similar forecast accuracy and all models suffer from similar lack of 
reliability. As such, a  multi-model ensemble consisting of POAMA2, ECMWF, UK Met 
Office and Meteo-France forecast systems demonstrates that a MME is the best possible 
method of providing improved  forecasts of SEA climate. The MME improves accuracy 
and reliability while retaining sharpness and resolution.   
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