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1. ABSTRACT 

Ensemble forecasts of South Eastern Australian rainfall from POAMA 1.5, a coupled ocean-
atmosphere dynamical model based seasonal prediction system run experimentally at the 
Bureau of Meteorology, tend to be under dispersed leading to overconfident probability 
forecasts. The poor reliability of seasonal forecasts based on dynamical coupled models is a 
barrier to their adoption as official outlooks by the Bureau of Meteorology. 
 
One approach to correcting this problem is model calibration, in which the probability 
distribution produced by the model is adjusted in light of available information about its past 
performance. Several distinct methods for calibrating seasonal rainfall forecasts for South 
Eastern Australia derived from the POAMA 1.5 ensemble are compared for accuracy and 
reliability in order to assess their suitability for application to real-time seasonal forecasts. 
 
The calibration methods investigated were: a variance inflation method (IOV); a Bayesian joint 
probability (BJP) calibration technique; and a singular vector regression technique (SVD) based 
on co-varying patterns of model and observed rainfall. Calibration was carried out for model 
grid points in the Murray Darling region. 
 
Assessment was carried out using a mix of standard skill scores widely used in operational 
forecasting. It was found that the BJP method resulted in the best correction to forecast 
reliability while IOV improved reliability only modestly and the SVD scheme had a negative 
impact on reliability. Further study of the application of these methods to real-time forecasts is 
recommended. 
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2. INTRODUCTION 

Dynamical coupled ocean-atmosphere general circulation models promise to extend the 
accuracy and lead time with which seasonal rainfall forecasts can be made beyond that of pure 
statistical schemes. It is expected that in a non-stationary climate purely statistical schemes 
based on observed relationships between climate indicators and local variables will begin to fail 
as the climate drifts away from the regime for which the model was tuned. In practice however 
the best statistical models (for example the current Bureau of Meteorology seasonal climate 
outlook scheme (Drosdowsky and Chambers, 2001)) still out-perform available dynamical 
models in the aspect of reliability of probabilistic forecasts. 
 
Reliability, defined as the degree to which the observed frequency of an event coincides with its 
forecast probability, is an important aspect of probability forecasts. Reliability is essential if 
probability forecasts are to be used in a quantitative way in risk management or decision 
making. Reliability does not guarantee useful skill, but forecasts that are not reliable cannot be 
taken at face value and must be adjusted or ’calibrated’, either implicitly as occurs when a 
verification plot demonstrating overconfidence is published next to a forecast or explicitly by 
downgrading probabilities that are not justified by model performance. Reliable probabilities 
are said to be well calibrated. 
 
Analysis of hindcasts of seasonal rainfall from the dynamical model based POAMA system 
shows that direct ensemble (ensemble relative frequency) forecasts of the probability of above 
median rainfall in the Murray Darling Basin region (MDB) are overconfident. Ensemble 
relative frequency means that the probability of the event is assigned as the number of ensemble 
members in which the event is measured. The assumptions that underpin this method of 
assigning probabilities are discussed below. Figure 1 shows the reliability diagram over all 
seasons of the POAMA 1.5b hindcasts for probabilities of above median rainfall prepared in 
this way for the MDB. The hindcast data used for this analysis are described below. 
 
The reliability diagram (also called an attributes diagram when plotted with a histogram of 
frequency versus probability) plots the forecast probability in discrete bins against the observed 
frequency of events in each bin. 
 
We follow the prescriptions in (Broecker and Smith, 2007) for locating points on the x axis at 
the mean bin probability. To indicate the sampling uncertainty of the observed frequencies we 
use the bootstrap technique described in the same paper. In this bootstrap procedure the 
observed and forecast time series are resampled 1000 times, the reliability scores for each 
forecast bin computed for each resampled time series and the 10th and 90th percentiles of the 
distribution of scores plotted. 
 
Perfect reliability is indicated by the points lining up on the x=y line. Overconfidence is 
indicated by the line sloping such that observed frequencies are less (more) than forecast 
probabilities for above (below) 50%.  
 
The frequency distribution of forecast probabilities (shown inset in the diagrams) shows 
whether the forecasts have a tendency to be emphatic (indicated by large numbers of very high 
or very low probabilities) or equivocal (large numbers of near 50% forecasts). There is no 
’correct’ frequency distribution; instead this information aids the interpretation of the reliability 
diagram. 
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Reliability could be computed separately for each model grid point as it is expected to vary 
spatially, however the short time series length means the uncertainty in observed frequencies is 
too great for diagrams generated in this manner to be informative. Likewise reliability of the 
direct model output will vary for different seasons, however a good calibration method should 
be consistently reliable. 
 
In practice the reliability varies by season, with the cooler seasons in which the model has better 
skill showing better reliability than warmer months in which the model has virtually no 
predictive skill. Analysis of reliability for different forecast start months is a useful diagnostic 
tool but the overall reliability of the forecasts over all regions and seasons should be used to 
assess whether probabilities are well calibrated, because a reliable forecast system should be 
reliable uniformly. Where no skill exists, reliability is achieved by adjusting the predicted 
probability distribution to a climatological one. 
 

 

Fig. 1 Reliability of direct model (ensemble relative frequency) output from the POAMA 1.5 hindcasts of 
the probability of above median rainfall at all grid points in the MDB in the first three forecast 
months accumulated rainfall in the period 1980-2006, compared with AWAP analysis (Jones et al. 
2009). Ten bins for probability categories are used. Blue: climatological probability of above 
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median rainfall. Bootstrap error bars as described in Broecker and Smith (2007). Inset histogram 
shows the number of forecasts in each probability bin. 

There are several pathways to correcting reliability problems in coupled model forecasts. The 
first and most obvious is to improve the models by model initialisation. Model improvement 
work is ongoing but progress is slow, and increases to resolution are limited by computational 
capacity. The potential of better models in the future does not answer the question of how to 
extract the most values from imperfect models in the present. A second approach is to combine 
forecasts from a number of different yet plausible dynamical models. Multi-model combination 
aims to benefit from a better representation of uncertainty in model physics, model 
configuration and initialisation strategy. The multi-model approach is widely used in 
operational weather prediction and extended range weather prediction modelling centres and by 
organisations that generate seasonal outlooks based on model integrations made publicly 
available. Model combination is complicated by varying grid resolutions, ensemble sizes, 
different model skill and mean biases between models, as well as unresolved questions about 
model weighting. A third approach, model calibration, is the focus of this report. The aim of 
calibration is to use information about model performance over one period to adjust the forecast 
for a different period. Calibration methods can be considered to adjust the probability 
distribution produced by the model by using information about its past performance, with the 
aim of providing unbiased and reliable probability forecasts. 

2.1 Why calibrate dynamical seasonal predictions? 

 
In this section we elaborate on the motivation for model calibration in the context of dynamical 
seasonal prediction. Due to coarse spatial and temporal resolution and errors in parameterisation 
of sub-grid processes, dynamical models generate an imperfect projection of the system into the 
future. This can manifest as systematic mean bias, variability bias (either exaggeration or 
damping) and as bias in the location, spatial extent and shape of large scale features. A concrete 
example is the tendency of the ENSO mode in the POAMA model to drift westwards (Zhao and 
Hendon, 2009). 
 
Ensemble forecasts can be converted into probability forecasts by a number of methods, the 
simplest of which is to assume the model ensemble is a perfect sample from the space of 
possible outcomes and to assign probabilities to intervals or percentiles based on the ensemble 
frequency. This assumes that all uncertainty in the prediction probability density function (PDF) 
is accounted for by the ensemble spread. We use this relative frequency method to generate the 
direct model probability forecasts to compare against different calibration schemes. Coupled 
model ensemble forecasts are typically under-dispersed, leading to probabilities based on 
ensemble frequencies that are too ‘emphatic’. In this document the term probability is used in 
the Bayesian sense in which it describes a state of knowledge, in this case the state of our 
uncertainty about the future given a model forecast and information about its past performance. 
Consideration of the sources relative frequencies cannot account for all prediction uncertainty 
with the set of imperfect models currently in operational use at forecasting centres around the 
world. 
 
The first source of uncertainty is dynamical instability. The atmosphere ocean system is 
internally unstable such that arbitrarily close initial states will diverge over time. Dynamical 
ocean-atmosphere models reproduce these instabilities and the tendency for similar initial states 
to diverge, but not all instabilities in the real system will be captured by models. 
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The second major source of prediction uncertainty is uncertain initial conditions. Because of the 
sparseness and imprecision of earth system observations, knowledge of the state of the system 
with which to initialise models can only be expressed probabilistically. When coupled to the 
instability noted above, this implies that our knowledge of the evolution of the system in time 
invariably becomes less certain as lead time from initialisation increases. Ensemble forecasting 
allows initial condition uncertainty to be estimated and quantified by sampling the space of 
plausible initial conditions and projecting this sample forward in time. 
 
These first two kinds of error can be described as ’flow dependent’ error (see Palmer and 
Hagedorn (2006) for a detailed account of this concept), because their rates of growth and 
magnitudes are sensitive to the stability of the point in phase space characterising the flow. 
 
The final source of uncertainty is model error. This includes errors in physical parameterisations 
and errors due to unresolved processes at the sub-grid scale. Single model ensemble forecasts 
only capture the components of prediction uncertainty associated with uncertain initial 
conditions and model-captured instability, and these are only fully captured in the ideal case of 
an infinite ensemble that uniformly samples initial condition uncertainty. An ensemble of a 
single model provides no information about the model error component of prediction 
uncertainty. 
 
Model calibration (also known as ‘model error statistics’, ‘model output statistics’ and ‘forecast 
assimilation’) is one way to account for model error by adjusting the prediction probability 
density to be less certain than the ensemble spread indicates. Calibration adjusts the probability 
distribution produced by the model using information about its past performance. Information 
about model error is available from hindcasts, also called retrospective forecasts. 
 
A family of model calibration/correction techniques exists with the aim of correcting for 
systematic errors in the location of patterns or features. While our analysis includes one such 
technique, in this work we are focussed on the question of whether calibration methods can 
generate reliable ensemble forecasts. The issue of correcting systematic biases in the location of 
features is a separate question that is not addressed.  

2.2 Qualities of probability forecasts 

Reliability, resolution, sharpness and propriety are all relevant properties of probabilistic 
forecasts (see Jolliffe and Stephenson (2003) for an extensive discussion of these qualities). 
Reliability is the tendency of the observed frequency of an event to coincide with its forecast 
probability. Reliability of probability forecasts is essential if they are to be used in a quantitative 
way in risk management or to make economic decisions. In a simple cost/loss model of 
determining how much to spend to offset a risk, only a reliable probability allows for an optimal 
decision to be made (see for example Roulston and Smith (2002)), while forecasts that are not 
reliable cannot be taken at face value and must be adjusted. 
 
The other main quality of probability forecasts is resolution, which is defined as the frequency 
with which different observed outcomes follow different forecast categories. Resolution is a 
property of the model that cannot be improved by simple calibration unless additional 
information is included (this could be other model variables, or lagged relationships with 
observations, both of which are better thought of as developing a new statistical dynamical 
model than simple calibration). Resolution can be degraded by calibration, indeed it is expected 
that even the best calibration techniques will involve some trade-off in which resolution is 
exchanged for reliability. 
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Sharpness refers to the width of the probability distribution, and can be interpreted as the degree 
of certainty. Forecasts that are over-confident in terms of reliability tend to be too sharp. In an 
ideal situation sharpness would be reduced for overconfident forecasts with a minimal reduction 
of resolution. 
 
The quality of propriety of probability forecasts (Murphy and Winkler, 1987) (Jolliffe and 
Stephenson, 2003) requires that probability forecasts reflect the forecaster’s best judgement. 
‘Improper’ probability forecasts are either more emphatic or more equivocal than the forecaster 
believes is justified. Propriety requires that if forecasters do not believe their probabilities that 
they should not issue them unchanged. Because they cannot account for all known forecast 
error, ensemble relative frequencies are not ’proper’ predictive probabilities. 

3. THE POAMA DYNAMICAL SEASONAL PREDICTION 
SYSTEM 

The coupled ocean-atmosphere dynamical model (General Circulation Model: GCM) POAMA 
(Predictive Ocean Atmosphere Model for Australia) version 1.5b used in this study is composed 
of the Bureau of Meteorology Atmospheric Model version 3 (BAM3), coupled every three 
hours to the Australian Community Ocean Model version 2 with the Ocean Atmosphere Sea Ice 
Soil (OASIS) coupler (Alves et al. 2003). 
 
The atmospheric model has a spherical harmonic horizontal structure with triangular truncation 
at wave number 47 (grid cells of roughly 250km by 250km when transformed) and 17 pressure 
levels. The ocean component has 2 degree zonal resolution with a meridional resolution 
telescoping from 0.5 degrees near the equator to 1.5 degrees near the poles and 25 vertical 
levels. This configuration of the model is currently used for sea surface temperature (SST) 
forecasts for the equatorial Pacific (Wang et al. 2008) and the coral sea (Spillman et al. 2009) at 
the Australian Bureau of Meteorology. 
 
The hindcasts analysed in this report consist of an ensemble of ten integrations, initialised on 
the first of each month from 1980 until 2006 using a nudging scheme for atmosphere and land 
surface initialisation and an optimum interpolation scheme for ocean initialisation. This 
provides a time series of 27 years in length of the set of forecasts for each start month and lead 
time. 
 
The atmospheric initial conditions are provided by an Atmosphere and Land Initialization (ALI) 
scheme (Hudson et al. 2010) which nudges zonal and meridional winds, temperature, and 
humidity in BAM3 to those of the reanalyses from ERA-40 during 1980-2001 and to the global 
analyses from the BOM’s numerical weather prediction system (GASP) during 2002-2006. The 
initial conditions produced from ALI are similar to the analyses of ERA-40/GASP but result in 
less initial forecast shock than if the ERA-40/GASP analyses were directly used as initial 
conditions. Land surface conditions are initialized indirectly in response to the nudged 
atmospheric conditions. The ten ensemble members were generated by using atmospheric initial 
conditions consecutively 6 hours apart going back from the start time. 
 
The ocean data assimilation system provides an estimate of the state of the upper ocean based 
on the optimum interpolation (OI) of available sub-surface temperature observations (Smith et 
al. 1991), together with a strong relaxation of the SST to observed analyses. 
 
POAMA’s direct rainfall output has some skill at predicting the variations in South Eastern 
Australian rainfall associated with tropical sea surface temperature at short lead times (Lim et 
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al. 2009) thought to be a consequence of the model’s realistic but exaggerated rainfall response 
to ENSO. 
 
For this study we extract seasonal mean rainfall as the mean of the first 90 days of each 
forecast, for the 28 model grid points in the MDB region. 

4. CALIBRATION TECHNIQUES 

There are a large number of proposed and potential calibration techniques. In this study we 
compare the performance of three quite different techniques: an inflation of variance (IOV) 
calibration as described in Johnson and Bowler (2009); a Bayesian conditional probability 
regression model described in Wang et al. (2009); and a technique designed to correct 
systematic errors in the spatial location and amplitude of the main modes of variability 
described in Feddersen et al. (1999). Each of the calibration techniques is applied directly to the 
coupled model’s seasonal mean fields. The dataset used for calibration was the gridded 
Australian rainfall data described in (Jones et al. 2009) produced under the Australian Water 
Availability Project (AWAP). 

4.1 Inflation of variance 

The variance inflation technique used in this work is detailed in Johnson and Bowler (2009). 
This scheme adjusts the ensemble forecast to meet two conditions: a) that ensemble members 
have the same variance as observations, and b) that the root-mean-square error of the ensemble 
mean be equal to the spread of the ensemble. The first condition is designed to achieve the 
statistical indistinguishability of the first two moments between ensemble members and 
observations. The second condition is designed to ensure that the ensemble spread accounts for 
the expected model error. These conditions are achieved by increasing (or decreasing) the 
perturbations of the ensemble members from the mean while keeping the correlation between 
model and truth is unchanged (except in the case of a negative correlation between model and 
truth, in which case the sign of the correlation is reversed). In the case of an under-dispersed 
forecast this is done by increasing the perterbations of ensemble members from the mean. 
 

Given ensemble mean   and ensemble member perturbations �, adjusted ensemble members gi 

are constructed by 
 

 
 

Coefficients α and β are computed as 
 

 

 
 



 

9 
 

with observed standard deviation σx, ensemble mean variance    , correlation between 
observations and ensemble mean ρ and time average of ensemble variance      . Leave-one-out 
cross validation is used for the calculation of correlation and standard deviation when 
constructing a calibrated hindcast set. The time series for each grid point was calibrated 
independently. 

4.2 Bayesian Joint Probability 

A Bayesian Joint Probability (BJP) statistical modelling method is described in detail in Wang 
and Robertson (Wang et al. 2009). BJP is a form of generalised Bayesian regression model in 
which Markov Chain Monte Carlo (MCMC) sampling is used to estimate transformation and 
regression parameters. This method is extensible beyond simple model calibration with the 
inclusion of any number of additional predictors, however in this report we examine solely the 
simple case of a single model ensemble mean predictor. The ensemble mean time series of 
seasonal mean rainfall at each POAMA grid point is used as a predictor for seasonal mean 
rainfall at that grid point, with model parameters computed independently for each grid point 
and start month. 
 
In this section we give a schematic overview of the technique as applied to this study. It is 
conceptually similar to the Bayesian conditional probability calibration technique described in 
Stephenson et al. (2005) and Coelho et al. (2004) but differs in the details of likelihood and 
parameter uncertainty calculation. 
 
The steps of the BJP calibration are as follows: 
 
1. An extended Box-Cox transform (Yeo and Johnson, 2000) is applied to predictor and predict 
and data. 
 
2. Transformed data is assumed to be joint-normally distributed and the relationship stationary, 
so the model parameters are fully specified by the vectors of mean, variance and transformation 
parameters and a correlation matrix. 
 
3. A transformation is applied to the model parameters (the mean, variance and correlation 
matrix) such that the re-parameterised correlations to accelerate the MCMC sampling. 
 
4. Model parameters θ are given by Bayes theorem as 
 
 
 
 
 
with hindcast data H and observations O. p(θ|H) is the likelihood function, which gives the 
probability of observing the hindcast-observation series given a set of model parameters. 
 
5. p(θ) is the prior probability for the model parameters. A uniform prior is used for the Box-
Cox transform parameters. More elaborate, diffuse priors are used for the transformed 
correlation matrix, mean and variance parameters. 
 
6. The distribution of model parameters θ is determined by solving Bayes theorem using 
MCMC sampling. 
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7. The posterior probability of the Box-Cox transformed forecast variable is given by a normal 
distribution, or equivalently a linear regression using the sampled mean and covariance vectors. 
 
8. To generate an ensemble forecast the posterior probability distribution is sampled and an 
inverse transform is applied to the ensemble forecast. 
 
In the single predictor case examined in this study the model is closely related to a linear 
regression model but enhanced by accounting for parameter uncertainty and with the potential 
to detect nonlinear predictor-predictand relationships through the distribtion transformation 
parameters. Only the ensemble mean is used, so no information about the model spread is 
included in the calibration, in other words all prediction uncertainty is due to accounting for 
model error and parameter uncertainty. 
 
In constructing a calibrated hindcast set leave-one-out cross validation was used. The time 
series of each grid point, for each three month season, was calibrated independently. 

4.3 Singular Value Decomposition Analysis Calibration 

Finally a technique designed to correct systematic errors in the spatial location and amplitude of 
the main modes of variability was examined. This method is described in Feddersen et al. 
(1999), and its application to POAMA 1.5 discussed in Lim et al. (2011). A singular value 
decomposition analysis (SVDA) of the covariance matrix of the POAMA hindcast ensemble 
and the National Climate Centre’s ‘Barnes’ gridded analysis (Jones and Weymouth, 1997) and 
was employed to determine the spatial patterns with the most temporal covariance. This results 
in a set of model patterns with corresponding (corrected) observed patterns for each forecast 
season and start month. Although all other techniques were built using the AWAP analysis, at 
the coarse spatial and temporal resolution used in this study this is not considered to affect the 
results, as in the observation rich Murray Darling region there is very little difference between 
the two datasets. 
 
The calibrated forecast is reconstructed using the first five observed patterns with weights given 
by the projection of the un-calibrated forecast onto the corresponding model patterns. This 
method is also referred to in the literature as maximum covariance analysis (MCA) Stephenson 
et al. (2005). 
 
Leave-one-out cross validation is used such that the SVD patterns used for each hindcast year 
are based on the statistical relationship between observations and the POAMA hindcasts in all 
other years. Means and standard deviations from the independent period are used at all stages of 
the calculation. 

5. RESULTS 

5.1 Inspection of time series 

In this section we examine basic properties of the raw and calibrated time series at high and low 
skill points. Inspecting the time series at grid points of ‘high’ and ‘low’ skill gives insight into 
the characteristics of each calibration method. A perfect calibration method is expected to leave 
the high skill prediction relatively unchanged (although possibly moderated by sampling 
uncertainty in the high correlation). On the other hand a perfect calibration method is expected 
to replace a low skill prediction with a climatological prediction.  
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Fig. 2 Direct model and calibrated time series of seasonal mean rainfall anomalies starting in July for a 
point that shows high hindcast correlation. In order from top to bottom: Direct coupled model 
anomalies, variance inflation, SVD and BJP. Blue lines: tenth percentile (dashed), mean and 
ninetieth percentile (dashed) of the ensemble at each time step. Anomalies are with respect to 
each model’s climatological mean. cc: Correlation coefficient, rmse: root mean square error 
between ensemble mean and observations, std: standard deviation of ensemble mean. 
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Fig. 3 Direct model and calibrated time series for a point that shows low hindcast correlation. Legend as 
for fig. 2. Large negative correlations for the BJP and IOV time series is shown to illustrate a 
cross-validation artifact. 
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As a high skill point we choose an inland point for the season June-July-August, where the 
correlation between model and observations is 0.73. Figure 2 shows the time series for the three 
calibration methods for the season. Applying variance inflation preserves the main phase 
characteristics of the time series while increasing the distance between highest and lowest 
ensemble members. The ensemble mean is largely unchanged after variance inflation. The SVD 
calibration contracts the ensemble spread sharply, even after scaling the normalised svd time 
series by the observed standard deviation. 
 
The main features of the direct model time series including the peak in 1997 are preserved. The 
BJP calibration slightly reduces the variability in the ensemble mean, and slightly smooths the 
year to year variability of the ensemble spread while preserving the main phase characteristics 
of the un-calibrated ensemble mean. The BJP calibration also increases the spread of the 
ensemble, capturing more of the observed values between the 10th and 90th percentiles. The 
RMS errors shown on the figure are of a comparable magnitude between the various methods to 
within sampling variability. See fig. 12 for a comparison of the RMSE of each method. 
 
For a ‘low skill’ point we chose a grid point on the New South Wales coast for forecasts starting 
in February, in which the hindcast correlation is effectively zero. Figure 3 shows the time series 
of direct model and calibrated output for this ’low skill’ grid point. 
 
The variance inflation increases the ensemble spread such that more points are ‘captured’ in its 
envelope, and significantly smooths out the variance of the ensemble mean. The SVD 
calibration again greatly reduces the ensemble spread, which in this case is undesirable. The 
BJP calibration in this case replaces every forecast with a near climatological PDF. The high 
negative correlation shown on the plot is an artefact of cross validation and is discussed further 
below. 

6. VALIDATION OF CALIBRATED HINDCASTS 

We validate the calibration methods against the direct model output using a number of measures 
and scores, because no single score can capture all the attributes of good probability forecasts. 
Some scores are widely used for scoring operational forecasts while others are less widely 
known. There is inevitably some redundancy between the skill measures we have chosen (for 
example hit rate and anomaly correlation are both sensitive to phase errors but insensitive to 
magnitude errors). The gridded Australian rainfall data described in (Jones et al. 2009) 
produced under the Australian Water Availability Project (AWAP) are used as the verifying 
analysis. 
 
For category probability type scores (hit rate, reliability) unless otherwise noted we are scoring 
for the probability of above median rainfall, where the verifying event is observed rainfall for 
the three month season falling above the climatological median. For direct scores we are 
verifying against the total seasonal rainfall over the three months from the start date. For most 
skill measures, the direct model output, SVD and inflation of variance results have their mean 
subtracted and the observed mean added. This is a common procedure that removes the model’s 
systematic mean bias, and in this work is performed in a leave-one-out cross-validated manner 
such that for each point in the time series the mean of all other times is used for bias correction. 
This procedure is not performed for the BJP results because systematic mean biases are 
corrected by the technique itself. 
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6.1 Anomaly Correlation Coefficient 

Anomaly Correlation Coefficient (ACC) indicates the strength of the linear relationship 
between two time series. Correlation coefficient can be sensitive to a small number of large 
events, and is somewhat noisy in that a large sampling error is expected for short time series. 
Despite these issues, correlation is an excellent indicator of model skill, because it is insensitive 
to climatological differences between the model and observations, picking out where the two 
time series have a common signal. Even where the correlation is less than traditional 
significance thresholds for independent time series, the spatial coherence of correlation patterns 
can be used to infer that a real signal is present. Correlation is not sensitive to the absolute 
magnitude of co-variation and so should be interpreted alongside an error statistic. Because we 
compute correlation for the ensemble mean, it is insensitive to ensemble spread. It is included in 
this study to assess whether any of the techniques degrade the predictive skill of the raw model. 
 
For forecast time series f with mean     and observed time series o with mean   and standard 
deviation σo the anomaly correlation is computed as ACC = 
 
        

(1) 
 
 
As noted in (Barnston and van den Dool, 1993), the leave-one-out cross validation technique 
results in a purely artificial anti-correlated signal appearing in the calibrated output. In the 
absence of a significant relationship between the un-calibrated model and the real system, this 
artificial anti-correlation dominates the calibration and can result in a calibrated forecast 
perfectly out of phase with the observations (with small magnitude). This occurs most 
noticeably in the BJP results. Barnston and van den Dool (1993) note that this degeneracy is 
only noticeable when the correlation between predictor and predictand is well below typical 
significance thresholds. 
 
This is demonstrated in Fig. 3 which shows the time series for a grid point for which the model 
has no discernable predictive skill (anomaly correlation of -0.02). It can be seen by inspection 
that the BJP calibration is the better prediction of the three time series because it reverts to a 
climatological PDF. The high anti-correlation of -0.87 of the BJP ensemble mean with the 
observed time series is due solely to the small amplitude fluctuations caused by cross-
validation. The other calibration methods also show high negative correlations for this case. 
 
These spurious large negative correlations should be ignored when interpreting the results. The 
simplest way to achieve this, suggested by Barnston and van den Dool (1993) and adopted in 
this study is to treat all negative correlations as zero when plotting, and when computing 
averages. We have no prior reason to expect an inverse correlation between model and 
observations other than random sampling so it is reasonable to treat negative correlation as 
indicating no significant relationship. For this reason negative correlations are not shown in    
fig. 4. 
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Figure 4 shows anomaly correlation at each grid point, by forecast start month. It can be seen 
that the spatial patterns are quite similar across the direct model and all calibration methods. 

 

Fig. 4 Anomaly correlation for each calibration method. 

 
 
 



 

17 
 

Figure 5 shows the mean anomaly correlation across the region compared for the different 
methods. Because a correlation of approximately 0.3 is significant at the 95% level by a one 
tailed t-test for a time series of length 27, this is plotted as a threshold of ’useful skill’, although 
this is still quite low and confirms the low predictability of MDB rainfall by this model. 
Notably, for seasonal forecasts initialised in July, the correlation of all methods remains high. 
This suggests none of the techniques degrades the phase relationship of the prediction where 
skill is high. 
 

 

Fig. 5 Spatial mean of anomaly correlation for each calibration method. Seasonal mean rainfall. 

6.2 Hit rate 

Hit rate, also known as proportion correct, is a coarse grained score that measures whether 
events are correctly distinguished. A hit is counted for an above median event when the forecast 
ensemble median (or equivalently the bulk of the probability mass) is above the model’s 
climatological median, and a miss when the forecast ensemble median is on the wrong side. 
Leave-one-out cross validation is used to compute the medians for the purpose of creating the 
probability forecast and categorising the observations as above or below median. Hit rate also is 
susceptible to the cross-validation artefact discussed above for low skill cases. To avoid results 
being affected by this artefact we treat probabilities in the range 40% to 60% as being equivocal 
(50%) and do not count them in the score. 
 
The simple hit rate is open to the criticism that it scores a forecast of 51% equally to a score of 
99% provided the event verifies. In other words an emphatic and an under confident forecast 
that lie on the correct side of 50% are scored equally as a ’hit’. However it is widely used for 
scoring operational forecasts and gives a clear indication of whether the forecast system is 
’leaning’ in the right direction. Many users are only interested in this information and so scoring 
forecasts as categorical is important for gauging how they will be perceived by the public. As 
for anomaly correlation it is insensitive to model spread, so when looking at hit rates we are 
examining the calibrated series for degradation and do not expect to see improvement. 
 



 

18  Comparison of techniques for the calibration of coupled model forecasts of Murray Darling Basin 
seasonal mean rainfall 

Hit rate is calculated as so: if there are a cases where the forecast is greater than 50% and the 
event occurs, and d cases where the forecast is less than 50% and the event does not occur, with 
N total forecast cases the hit rate is given by 
 

(2) 
 
 
Figure 6 shows the hit rate by grid point. This shows similar spatial patterns to the correlation 
plot. 
 

 

Fig. 6 Ensemble median hit rate for above median rainfall events, by grid point 
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Figure 7 shows hit rate averaged across the region. This figure shows that the ensemble hit rate 
averaged across the region is not significantly changed by calibration. The negative effect for 
low skill start months such as December is explained by the cross-validation artefact described 
above. 
 

 

Fig. 7 Ensemble median hit rate for above median rainfall, averaged over the region. 

6.3 Ensemble hit rate 

To address the coarseness of the simple hit rate, an ‘ensemble hit rate’ can be computed. This is 
a count of the number of ensemble members correctly above or below the model median. 
Because it also makes full use of the model ensemble, this gives a smoother result than the 
discrete hit rate described above, and rewards emphatic forecasts that are correct. 
 
Over all forecasts, if there are ae ensemble members with above median rainfall and above 
median rainfall occurred, and de where both ensemble member and observations were below 
median with N total forecast cases and n ensemble members the ensemble hit rate is given by   
 
 

(3) 
 
 
 
 
 



 

20  Comparison of techniques for the calibration of coupled model forecasts of Murray Darling Basin 
seasonal mean rainfall 

Figure 8 shows the ensemble hit rate by grid point. The difference between this plot and the 
ensemble median hit rate illustrates the increase in ensemble spread accomplished by the IOV 
and BJP calibrations. No calibration analysed in this study improved the ensemble hit rate. This 
is not unexpected for the BJP and IOV methods which bring no new information beyond the 
hindcast-observed relationship at each grid point. A spatial pattern correction method like SVD 
could be expected to improve hit rates, but we do not observe this in our study. 
 

 

Fig. 8 Proportion correct of ensemble members by grid point. 
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Figure 9 shows ensemble hit rate averaged across the region. This figure shows that the 
ensemble hit rate averaged across the region is more or less unchanged by calibration. 
 
 
 

 

Fig. 9 Proportion correct (above/below median rainfall) ensemble members averaged over the region. 

6.4 Root Mean Square Error in Probability Space 

Root Mean Square Error in Probability Space (RMSEP) is similar in formulation to the widely 
used LEPS (Linear Error in Probability Space) score and is described in Wang et al. (2009). The 
RMSEP score is relatively insensitive to small numbers of large events that can dominate 
correlation coefficients. RMSEP will penalize forecasts that are climatologically different from 
observations. 
 
The RMSEP score can be computed for the ensemble mean, median, or for the whole ensemble. 
We show results for the ensemble mean only. Note that because of this no information about the 
prediction sharpness is taken account of by this scoring. With observed cumulative 
climatological distribution F, N timesteps, forecast mean f and observed value o, the RMSEP 
score is calculated as 
 
 

 (4) 
 
 
A RMSEP skill score is given by the fractional improvement with respect to a climatological 
forecast: 
 

 
(5) 
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Figure 10 shows the RMSEP score by grid point. There is little difference between the various 
calibration techniques on this metric. The BJP calibration produces the best improvement in 
RMSEP score, closely followed by IOV. All calibration methods seem to remove the regions of 
grossly poor scores apparent in January, May, June, November and December. In July the 
calibration methods show no improvement on this score. We speculate September season is 
most skilfully predicted, and the primary function of the calibration methods studied is to 
correct systematically bad forecasts. 
 

 

Fig. 10 Root mean square error in probability space score at each grid point. 

Figure 11 shows the RMSEP score averaged across the region. Again it can be seen that the 
direct model scores poorly for hindcasts initialised in November, December and January. Both 
IOV and BJP produce a near neutral or positive RMSEP score for all months. 
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Fig. 11 Root mean square error in probability space score averaged over the region. Score is per cent 
improvement over a climatological forecast. 

6.5 Normalised Anomaly Root Mean Square Error 

Normalised anomaly Root Mean Square Error (NRMSE) is simple, intuitive and widely used, 
and is computed as 
 

 
 (6) 

 
 
with    xv indicating the cross validated mean of forecast f, observed standard deviation σ and 
time series length N. 
 
The NRMSE gives the mean distance from forecast ensemble mean to the corresponding 
observation, indicating the magnitude of error. The error is normalised by the observed standard 
deviation at each gridpoint to enable comparison of errors at points of different natural 
variability, and to indicate where the magnitude of the error is comparable to or greater than 
natural variability. The coupled model output is not normalised before the error is computed. As 
noted above the SVD calibration includes a scaling by the cross validated observed standard 
deviation. Where the NRMSE is greater than one, expected error magnitude is greater than the 
magnitude of observed inter-annual variability. 
 
Figure 12 shows the NRMSE by grid point. All methods have a similar NRMSE, and all 
calibration methods seem to remove the grosser errors visible in January and May. The spatial 
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NRMSE plot indicates that only forecasts starting in July have an expected RMS error less than 
the observed standard deviation. The spatial plots show that in general the calibrated forecasts 
have a more consistent error than the direct model across the region, in particular for January 
where the high error hotspot on the Northern coast is smoothed out by all calibrations. 
 

 

Fig. 12 Normalised RMSE for the three schemes. Values greater than 1 indicate the error is larger than 
the observed standard deviation (natural variability). 

Figure 13 shows the NRMSE averaged across the region. 
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Fig. 13 Normalised root-mean-square error averaged over the MDB region 

6.6 Reliability 

As discussed above reliability is defined as the degree to which forecast probabilities of an 
event and the frequency of occurrence of the event coincide. 
 
Figure 14 shows the reliability diagrams for the direct model and each of the calibration 
schemes. It can be seen that the SVD calibrated forecasts are less reliable than the direct model 
output. It can be seen Fig. 14 that the variance inflation improves the reliability of the ensemble 
forecast, but more for low probability than high probability forecasts. The BJP calibration 
produces the closest to perfect reliability plot of any of the analysed methods. 
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Fig. 14 Reliability over all grid points and start months Top left: direct model output. Top right: SVD 
calibration scheme. Bottom left: inflation of variance calibration scheme. Bottom right: BJP 
calibration scheme. 

7. DISCUSSION 

It is important to note that the three techniques used for this study are different in character and 
motivation: we are not clearly comparing like with like. In this section we discuss the 
verification results in light of each technique characteristics and elaborate on perceived 
strengths and weaknesses of each technique. 
 
The SVD calibration made no improvement in reliability. For skill measures using only the 
ensemble mean, the SVD calibration scheme was comparable in performance to the other two 
methods. The SVD scheme is designed to correct errors in spatial patterns, and does not include 
an model error (noise) term when reconstructing the forecasts. This reduces prediction 
uncertainty of the third kind (due to model error). A very small number of spatial patterns are 
used, with most of the loading on the first two patterns. The projection onto these patterns will 
invariably have less variability than the original forecast. This explains why the ensemble 
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spread is highly truncated and there is little inter-ensemble member variability. This reduces 
prediction uncertainty of the first kind described in the introduction (due to internal model 
variability) and explains why the procedure does not improve reliability. 
 
Another question in relation to the SVD method is whether the covariance matrix is sufficiently 
determined given the short time series (Lim et al. 2011). 
 
The BJP scheme resulted in calibrated forecasts with as close to perfect reliability as could be 
expected. 
 
The BJP technique performs well when the model shows no hindcast skill, generating highly 
reliable forecasts of climatology. The BJP method reduces the variance of the ensemble mean 
and hence removes the forecast signal in roughly inverse proportion to the model-observation 
correlation. 
 
Grid points are calibrated as independent time series, and thus there is no way for the technique 
as used for this study to take account of the degree of spatial coherence of the pattern of 
correlation between model and observations. The modes of atmospheric variability influenced 
by predictable ocean circulation are large scale circulations with large scale impacts, therefore 
individual model grid points are not independent, especially on the seasonal timescale. Because 
of this, coherent regions of high spatial correlation are more likely to be related to real 
prediction of the circulation, while isolated points of high correlation are more likely to be 
random noise. The BJP describing the main important modes of rainfall variability, rather than 
at each grid point individually. Alternatively other methods of filtering noise in the pattern of 
model-reanalysis correlation might be devised. 
 
The IOV calibration scheme improved the RMS error and RMS error in probability space to the 
same extent as the BJP method. The improvement to reliability of the inflation of variance 
scheme was positive but modest. Of the three schemes inflation of variance had the least impact 
on the direct model ensemble mean time series. In this sense it is a ’conservative’ calibration 
technique that only weakly conditions on model skill. A potential problem with relying on the 
sample correlation is the high sampling error due to a short time series. The simplicity and ease 
of implementation of the IOV scheme are also strong points in its favour. As with the BJP 
technique the variance inflation is applied to individual grid points as if they were independent 
and so is susceptible to noise in the pattern of model-observation correlation. Further 
investigation into this question is warranted. 

8. CONCLUSION 

The three calibration schemes come from different families, and the hindcast period is very 
short. The shortness of the hindcast period, coupled with the modest level of useful skill limits 
the amount of useful information this type of study can provide. Variations in particular metrics 
for particular techniques in particular months may or may not be systematic. 
 
The primary aim of the study was to investigate the improvement to forecast reliability of 
different calibration schemes. The BJP calibration scheme corrects the reliability close to 
perfectly and preserves the model signal in regions and periods of identifiable hindcast skill, so 
on this question the BJP method could be identified as a clear winner. 
 
The inflation of variance calibration performed at individual grid points improves reliability 
positively and maintains the model signal, but does not improve reliability well for high rainfall 
forecasts. 
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The SVD scheme had a negative effect on reliability and so is not useful for improving this 
aspect of the forecasts. However we note that this family of techniques may prove useful for 
correcting other aspects such as spatial biases in teleconnection location, and indeed it was 
competitive with other methods on most metrics. 
 
A weakness of the model output statistics approach examined here is that none of the schemes 
explicitly incorporate dynamical information that is relevant to prediction uncertainty such as 
variations in predictability with ENSO phase (which we might call ’flow dependent 
predictability’ (Palmer and Hagedorn, 2006)). The main physical basis for seasonal prediction 
in the MDB is the relationship of rainfall with tropical Indo-Pacific SST variability such as 
ENSO. The subjective confidence of climate forecasters in dynamical model predictions is 
much higher during strong Pacific SST events, but work would be required to determine how to 
include this in an objective calibration scheme. 
 
The short length of the available hindcasts limits how much can be learned from this exercise. It 
would be instructive to examine the performance of different schemes on synthetic data with 
known characteristics in order to better understand how the methods perform under different 
circumstances. 
 
Each method analysed in this report has a particular strength. The strengths of the BJP scheme 
are accounting for parameter uncertainty and strongly conditioning on hindcast skill. The 
strength of the SVD scheme is in accounting for the large scale coherence of the main 
predictable modes of variability. The strength of the inflation of variance scheme is in 
improving the reliability with minimal conditioning on hindcast skill. A general purpose 
calibration scheme for generating reliable forecasts from coupled models should consider each 
of these elements. 

9. RECOMMENDATIONS 

This report recommends further investigation into general purpose schemes for calibrating 
dynamical model outputs into forecasts of sufficient reliability to issue publicly. 
 
The BJP calibration method was shown in this study to generate hindcasts of rainfall in the 
MDB region based on POAMA 1.5 with near perfect reliability. It is recommended that an 
assessment the suitability of the method for the calibration of real-time forecasts from the 
POAMA model be carried out. 
 
Systematic spatial biases in the POAMA coupled models are known to exist. Because of this, 
further research into methods of spatial pattern correction is warranted. 
 
This report has noted the potential limitations of applying calibrations to individual grid points 
independently. Because of this, further research into whether spatial coherence is preserved by 
calibration techniques is warranted. 
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