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1. ABSTRACT 

In this report we assess forecasts from Predictive Ocean Atmosphere Model for Australia 
(POAMA) in comparison to international dynamical coupled model forecast systems, which are 
archived as part of the ENSEMBLES project. We investigate how universal the lack of 
reliability is in dynamical forecasts of regional rainfall, in order to highlight any potential for 
improvement of the POAMA system. The systems assessed in this report show that 
overconfidence and lack of reliability for regional rainfall forecasts is a common problem. Due 
to the clear need for improved reliability and more accurate seasonal rainfall forecasts for 
hydrological applications, we have explored the benefit of combining a range of operationally 
available models into a multi-model ensemble, which can cancel uncorrelated error, increase 
spread and reduce model error. Our results indicate that there is benefit in adding POAMA 
version P24 to the operational models from the European Centre for Medium-Range Weather 
Forecasts (ECMWF), the UK Meteorological Office (UKMO) and Météo France (MF), into an 
equally weighted multi-model ensemble, to increase the reliability and consistency of accurate 
regional rainfall forecasts.  

2. INTRODUCTION 

Seasonal forecasts from the POAMA prediction system tend to be overconfident and only 
moderately reliable for predicting seasonal mean Australian rainfall (e.g. Lim et al. 2010). 
Although the rainfall forecasts demonstrate skill, for instance as measured by a significant 
correlation of the ensemble mean forecast with the observed or by a reduced mean square error 
relative to a reference climatological forecast, low reliability and over confidence are 
impediments to uptake of the forecasts for practical application. In order to assess the 
prevalence of this problem in other comparable dynamical coupled model forecast systems, we 
have investigated forecast skill and reliability for regional Australian rainfall from a range of 
international coupled models using hindcast data accessed from the European Union 
ENSEMBLES project (e.g.Hewitt and Griggs 2004, Weisheimer et al. 2009). Due to the clear 
need for improved reliability and more accurate seasonal rainfall forecasts for hydrological 
applications, we have also explored the benefit of combining a range of operationally available 
models into a multi-model ensemble, with equal weighting.  

A reliable model, when considered over many forecasts, shows agreement between forecast 
probabilities and the frequency with which an event is observed, indicating appropriate 
uncertainty. Ensemble prediction systems seek to represent the uncertainty inherent in initial 
conditions by initiating the forecasts from a number of initial states which are perturbed from 
the observed state in order to represent observational uncertainty. However, simply initiating a 
single model with a range of perturbed initial states does not account for the full range of 
forecast outcomes because of model error in representing the dynamical processes. As a result, 
single models tend to not be reliable (Palmer et al. 2004) because they tend to underestimate the 
spread of the uncertainty, and are overconfident (Weigel et al. 2009). POAMA version 1.5 has 
previously been shown to be poorly to moderately reliable for predicting above median 
Australian rainfall in SON at lead time zero months even though forecast accuracy (e.g. as 
measured by correlation or hit rate) is typically highest in this season (Lim et al. 2010).  
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In this report we assess forecasts from POAMA version 1.5 (P15b) and 2 (P24) in comparison 
to forecasts from models from ECMWF, MF and UKMO that are archived as part of 
ENSEMBLES to determine how universal the lack of reliability is in dynamical forecasts of 
regional rainfall. We also address forecast accuracy in order to highlight the potential for 
improvement of the POAMA system. The archive of  ENSEMBLES hindcasts provide an 
opportunity to assess the performance of coupled model forecast systems with higher vertical 
and horizontal resolution compared to the current POAMA versions and which might be 
indicative of any performance gain that will be achieved in the future when the ACCESS model 
is incorporated into POAMA. Because of the widespread interest in using multi-model 
ensemble forecasts for hydrological and other practical applications, we describe the process to 
access the hindcast sets from the ENSEMBLES archive at the ECMWF.  

Combining different versions or independent models into a large ensemble has previously been 
used in operational weather prediction and is discussed in the literature as a method for 
increasing forecast reliability and accuracy (e.g., Weigel et al. 2009, 2008, Hagedornet al. 
2005). For example, the combination of the overconfident and emphatic forecasts taken directly 
from P15b with two statistical post-processed versions of these forecasts into a multi-model 
ensemble significantly  increases the skill and reliability of the predictions (Lim et al. 2010). 
The improvement of a multi-model ensemble (MME) over a single model depends on how the 
independent information in each contributing model reduces forecast errors, and increases the 
spread in the ensemble (Weigel et al 2009, Lim et al. 2010).  

The main advantage of the multi-model ensemble is that it is skilful more consistently than the 
single models, assuming the contributing forecast models have some level of comparable skill 
and the model which is most skilful varies across season and lead time, as is typical of 
independent models with a range of strengths and weaknesses.The multi-model ensemble 
provides the most consistently skilful operational system because of cancellation of 
uncorrelated error. It is not possible for the multi-model ensemble to perform worse than all of 
the individual models, as the additional information over the worst will only improve the 
prediction (Hagendorn et al. 2005). Note that deciding that a model is consistently worse than 
the other models would be a basis for excluding it from a multi-model ensemble, but this is a 
subjective assessment. A multi-model ensemble benefits from the strengths of a range of 
independent models, however, issues common to the models will not be resolved without 
further development of the parameterisation of the physical processes. 

The skill of an ensemble forecast generally increases with an increase in the number of 
members, due to more accurate representation of the uncertainty in the initial conditions. 
However, it has been suggested that a multi-model ensemble with the same number of members 
as a single operational model will out-perform the individual model in reliability and resolution 
measures. For example, three or more models were shown to beat a single model with the same 
number of ensemble members (Hagedorn et al. 2005).  

A number of international projects are exploring the benefits of combining the output of 
international centres into a multi-model ensemble forecast (Weisheimeret al. 2009, Palmer et al. 
2004, Hagedorn et al. 2005, Doblas-Reyes et al. 2000). EUROpean multi-model Seasonal to 
Inter-annual Prediction (EUROSIP) is an operational multi-model seasonal forecast system, 
launched in late 2005. It combines ensemble forecasts of coupled models from ECMWF, 
UKMO and MF, which have been run in a consistent manner.EUROSIP currently provides 
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Niño plumes and spatial maps of standardized ensemble means and probabilistic forecasts to the 
public. Each model has 41 ensemble members for the operational forecast. Operational data is 
available by agreement with the contributing research centres. Currently, hindcasts from these 
centres are available for a smaller number of ensemble members through the ENSEMBLES 
project. In this report we assess POAMA in comparison to the models from these contributing 
centres, and explore the benefit of including the Bureau of Meteorology’s forecasts into the 
EUROSIP project.  

2.1 POAMA data 

The current operational version of POAMA is P24, which combines the 10 ensemble members 
from the three model versions P24a, P24b and P24c into a multi-model ensemble comprising 30 
members. The P15b version of the model is a 10 member ensemble (e.g., Zhao and Hendon 
2009; Hudson et al. 2011). The main difference in the newer versions of POAMA is improved 
ocean data assimilation (Yin et al. 2010). Version P24c is identical to the version in P15b. 
Vesion P24a uses a slightly different version of the shallow convection scheme that results in 
less mean state drift and P24b uses an explicit flux adjustment to control the mean state. 
Hindcasts from POAMA are initialized on the first of each month for 1980-2005. Seasonal 
mean forecasts for MAM, JJA, SON and DJF for lead times of one and four months are 
assessed in this report, as this corresponds to the data available from the international coupled 
models. A lead time of one month corresponds to the forecast being initialised one month before 
the start of the verification season. For example, the lead time one month MAM forecast is 
initialised on the 1st of February.  

2.2 ENSEMBLES data 

Hindcasts from the ECMWF, Météo France and UK Met Office seasonal forecast systems are 
available through the ENSEMBLES project. Although there are additional models in the 
ENSEMBLES project, we concentrate on these three because operational predictions from 
systems similar to them contribute to the EUROSIP project and are thus indicative of what can 
be achieved currently using real-time systems. For instance The ECMWF IFS is similar to the 
ECSys3 seasonal forecast system that is the operational version used at ECMWF March 2007-
present. Similarly, the UKMO HadGEM2 system and the MF ARPEGE/OPA system are similar 
to their current operational seasonal forecast systems.  

The EU ENSEMBLES project, a collaboration of around 80 institutions, is focused on the 
benefits of ensemble prediction for seasonal to decadal forecasts. This report focuses on the 
multi-model and perturbed physics simulations from Research Theme 1 (RT1 – Development of 
the Ensembles Prediction Systems), which includes data fromthe ECMWF, MF, UKMO, the 
Euro-Mediterranean Centre for Climate Change (CMCC-INGV) and the Leibniz Institute of 
Marine Sciences at Kiel University (IFM-GEOMAR). Data is available for 1960-2005, for four 
start dates (Feb 1, May 1, Aug 1, Nov 1) and 7 month hindcasts (14 months for Nov 1). Table 1 
outlines the components of the models considered within this project. 
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Table 1Details of ENSEMBLES models with relevant references (Weisheimer et al. 2009, Rajeevan et al. 
2011). The ECMWF model includes land surface modules and climatological sea-ice cover. The MF model 
includes the GELATO sea ice model (Salas Mélia 2002), and is coupled using version 3 of the OASIS 
coupler. The UKMO HadGEM2 model includes a fully interactive sea ice module. The CMCC-INGV model 
includes a dynamical snow-sea ice model and a land surface model. 

 Atmosphere Ocean References 

ECMWF IFS CY31R1; 
T159/L62 

HOPE; 0.3o-1.4o/L29 Balmaseda et al 2008, 
Stockdale et al 2011 

MF ARPEGE4.6; 
T63/L19 

OPA8.2; 0.5o-2o/L31 Daget et al 2009, Madec et 
al 1998 

UKMO HadGEM2-A; 
N96/L38 

HadGEM2-O; 0.33o-
1o/L20 

Collins et al 2008 

CMCC-INGV ECHAM5; T63/L19 OPA8.2; 0.5º-2o/L31 Alessandri et al 2010, 
Madec at al 1998, 
Roeckner et al 2003 

IFM-GEOMAR ECHAM5; T63/L31 MPI-OM1; 1.5o/L40 Keenlyside et al 2005, 
Roeckner et al 2003 

UKMO 
(DePreSys) 

HadAM3; 
2.5ox3.75o/L38 

HadOM; 1o/L40 Gordon et al 2000, Pope et 
al 2000, Collins et al 2001 

 

Table 2Variables in the files corresponding to monthly mean 24 hour precipitation hindcasts from the 
ENSEMBLES project. 

Variable Input dimensions Description  

longitude longitude Degrees east, size 144, equally spaced 2.5o grid 

latitude latitude Degrees north, size 73, equally spaced 2.5o grid 

reftime time Forecast reference time, Days since 1950-01-01 
00:00:00. 

leadtime time Time elapsed since the start of the forecast in hours. 

time_bnd time, time_bnd Start and end of period over which the forecast(time) 
is valid.  

realization ensemble Number of the simulation in the ensemble, 54 in 
total. In order of institutions in Table 3. 

experiment_id ensemble, string4 Experiment identifier. 

source ensemble, string60 Method of production of the data. 

institution ensemble, string15 Institution responsible for the forecast system. 

sc  Height in m. 

prlr time, ensemble, 
latitude, longitude 

Total precipitation, in m/s. 
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Table 3. List of the institutions and methods of production of the data for the ENSEMBLES project.  
Realization and Experiment ID variables as in Table 2. 

Institution Source Realization Exp ID 

ECMWF IFS31R1/HOPE-E, Sys 1, Met 1, 
ENSEMBLES 

0-8 2001 

IFM-
GEOMAR 

ECHAM5 T63L31/MPIOM GR15L40, Sys 1, 
Met 10, ENSEMBLES 

0-8 2001 

Météo-France ARPEGEClimate4.6/OPA8.2/GELATO, Sys 
0, Met 1, ENSEMBLES 

0-8 2002 

UK Met 
Office 

HadGEM2, Sys 1, Met 1, ENSEMBLES 0-8 2025 

CMCC-
Bologna 

ECHAM5/OPA8.2, Sys 1, Met 0, 
ENSEMBLES 

0-8 2001 

UK Met 
Office 

DePreSys HadCM3+flux_cor+per_par, Sys 51, 
Met (10-18), ENSEMBLES 

0 2502 

 

The ENSEMBLES global hindcast atmospheric variables were accessed using Open-source 
Project for a Network Data Access Protocol (OPeNDAP) technology.  The following link 
directly accesses the relevant monthly mean atmospheric fields for the stream 2 hindcasts: 
http://ensembles.ecmwf.int/download/ensembles/stream2/seasonal/atmospheric/monthly/. See 
Table 5 in Appendix A, for details of the fields available at this link.  

For instance, the monthly mean 24 hour precipitation field is in the folder numbered 228. Each 
file name in this folder consists of an indication of the field and the start date of the hindcast. 
For example FC_228_mon_19970801.nc is the monthly mean 24 hour precipitation for seven 
months hindcast, starting from August 1, 1997. This file includes the nine ensemble members 
from each of the six institutions concatenated into a single dimension. The variables in a typical 
precipitation file are shown in Table 2. The contributing institutions and corresponding models 
and realisations are shown in Table 3.  

ECMWF, UKMO, CMCC-INGV and MF used small perturbations of the wind stress and SST 
fields to generate the nine ensemble members from three different ocean analyses. The control 
ocean assimilation was forced by ERA-40 (Uppala et al. 2005) momentum, heat and mass flux 
data. The two other states were generated with additional wind stress perturbations based on the 
difference between ERA-40 and CORE (Large and Yeager 2004) analyses. SST uncertainties 
were represented via the addition or subtraction of the difference between Reynolds2DVAR and 
ReynoldsOIv2 (Reynolds et al. 2002).  The atmosphere was initialised using ERA-40 
conditions.  

The IFM-GEOMAR ocean model initial conditions were determined from three coupled climate 
simulations with SSTs restored to observations, over 1950 to 2005. This follows the method 
described in Keenlyside et al. 2005. The nine members were generated with differing 
combinations of the resulting ocean and atmosphere perturbations.   
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The UKMO DePreSys ensemble of nine initial states was generated from perturbed surface and 
atmospheric parameters. The atmosphere initial conditions were taken from ERA-40 anomalies, 
the ocean initial conditions were determined from coupled runs which were relaxed to SST and 
salinity anomaly analyses.  

Initialization of the models is discussed in Doblas-Reyes et al. 2009, Weisheimer et al. 2009, 
and further documentation is available from the ENSEMBLES RT1 web site, 
http://www.ecmwf.int/research/EU_projects/ENSEMBLES/exp_setup/ini_perturb/index.html.  

The ENSEMBLES models have higher atmosphere model resolution than P15b and P24, but are 
comparable to the next version of POAMA in development. The ocean resolution is similar to 
the current versions of POAMA. The ECMWF atmosphere IFS model is run on a much higher 
resolution grid (T159 compared to T63 or equivalent for the other ENSEMBLES models and 
T47 for POAMA), and has finer vertical resolution (L63 compared to L17-L38 for 
ENSEMBLES and POAMA models). 

Besides ENSEMBLES, other publicly available hindcasts from operational coupled model 
seasonal forecast systems includes NCEP CFSV2 T126L64 (available to download from 
http://cfs.ncep.noaa.gov/cfsv2.info/; Saha et al., 2011). There are plans for a new multi-model 
project involving the ENSEMBLES and other international centres called the Climate Historical 
Forecast Project (CHFP) (http://www.clivar.org/organization/wgsip/chfp/chfp.php). It has 
commitments from about a dozen modelling centres to provide comprehensive output for at 
least six month hindcasts with ten ensemble members  from 1979-present, starting 1st of Feb, 
May, Aug, Nov. This scheme is similar to ENSEMBLES stream 2. Data will be publicly 
available from CHFP data portal.  

3 METHODOLOGY 

Observed rainfall for Australia for 1980-2005 is taken from the National Climate Centre's 
(NCC) gridded monthly analysis (Jones and Weymouth 1997).  These analyses are on a 
0.25x0.25 degree longitude-latitude grid in the range 44.5ºS-10ºS, 112ºE-156.25ºE.  

Seasonal mean rainfall forecasts from the different models and the corresponding observations 
were interpolated to the POAMA 2.5ºgrid over Australia before any analysis, using bilinear 
interpolation. The land and ocean mask files were also interpolated to the POAMA grid.  

Deterministic forecasts are calculated from the mean of all ensemble member anomalies, as 
compared to the individual model climatology. When assessing the forecast skill, the 
computation of the model climatology, means and medians are all leave-one-out cross validated.  

In this report, probabilistic forecasts of observing above median are assessed. The forecasts are 
calculated for each grid point, year, season and lead time from the fraction of ensemble 
members that predict rainfall greater than the correspondingleave-one-out cross-validated 
median value. In assessing the forecasts, the observations were compared to their own leave-
one-out cross-validated climatological median value. This removes any biases in the mean 
between the models and the observations.  
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Due to an even number of ensemble members in the POAMA hindcasts (10 in each version of 
the model), there is often the situation where half the ensemble members indicate a wetter than 
median forecast, and half the ensemble members indicate a dryer than median forecast. This 
corresponds to exactly a 50 per cent probability of above median rainfall, and a 50 per cent 
probability of below median rainfall. As the observations only fall into a single category, the 
choice on how to ‘award’ this two category forecast can affect the skill measure in comparison 
to other forecast systems. If a single hit is given for an equal probability forecast, no matter 
which category is observed, the skill is biased higher than if a hit is not given for this situation. 
As the ENSEMBLES models have an odd number of ensemble members, an equal probability 
forecast never occurs. 

Therefore, to avoid 50 per cent forecasts, a subset of nine ensemble members was used to create 
the POAMA forecasts. As the ensemble members are created from a set of perturbed initial 
conditions, we must ensure the forecast is not biased by the selection of the subset of members. 
To properly sample the range of initial conditions with only nine ensemble members, the 
probabilistic forecasts resulting from the random choice of nine members without replacement 
were averaged over 100 Monte Carlo simulations. For deterministic forecasts, the ensemble 
mean of the randomly selected nine members was averaged over the 100 Monte Carlo runs.  

3.1 Multi-model ensembles 

A multi-model ensemble combines the ensemble members from a number of independent 
models into a single prediction. For a deterministic forecast, the ensemble-member anomalies 
are calculated from the relevant model climatology, and then all model ensemble members are 
averaged to calculate the multi-model ensemble mean. The weighted ensemble mean of a multi-
model ensemble with M models is therefore; 

  







=

k i

i
k

k
kMME x

N
w

M
x

11
  (1) 

where wk is the weight of the kth model which has Nk ensemble members, and the anomalies xk
i 

are calculated using the model climatology of the individual model.  

For a probabilistic forecast from a multi-model ensemble, the probabilistic forecasts from each 
individual model are averaged, with weighting if necessary; 

=
k

kkMME pw
M

p
1

  (2) 

where pk is the probability of the event occurring from the kth model forecast (Johnson and 
Swinbank 2008). In this report, only a simple combination is explored, where all models have 
equal weight (wk=1 for all k). Averaging the probabilistic forecasts of each contributing model, 
as opposed to pooling the ensemble member anomalies to then create the forecast, accounts for 
any bias in the ensemble mean or difference in spread between the individual models.  



 

12   Assessment of international seasonal rainfall forecasts for Australia and the benefit of multi-model ensembles for 
improving reliability  

The new operational version of POAMA consists of P24a, P24b and P24c combined into a 
single version of the model. The contributing versions are not independent. Hence, the multi-
model ensemble for P24 benefits from an increase in ensemble members, but does not fully 
benefit from a large range in possible parameterisations of the physical processes.  

4 HINDCAST ASSESSMENT 

4.1 Accuracy 

For a two-category forecast of above/below median rainfall, the contingency table (Table 4) can 
be used to determine the accuracy of the forecasts.A forecast where the probability of above 
median rainfall is greater than 50 per cent is categorised as a ‘yes’, and where it is less than 50 
per cent is categorised as a ‘no’. An observation of above median rainfall is categorised as a 
‘yes’ and an observation of below median rainfall is categorised as a ‘no’. As discussed in 
Section 3, there are no forecasts where the probability is exactly equal to 50 per cent.  

Table 4Contingency table for diatomic forecast, e.g. above/below median rainfall. 

 Observed 
 

 Yes No 

Yes Hit False Alarm 
Forecast 

No Miss Correct Negative 

 

The accuracy score is equal to the total number of hits and correct negatives, divided by the 
total number of forecasts; 

Accuracy Score =                 Hits + Correct Negatives                        x 100 %  
                               Hits + Misses + False Alarms + Correct Negatives 

 (3) 

Figure 1 shows the accuracy scores of the individual models for a lead time of one month. The 
accuracy at each grid point is calculated from 26 years of cross-validated forecasts. An accuracy 
score greater than 50 per cent is considered a skilful forecast, and is represented by the green 
and blue grid points.  

The models are most accurate for predicting regional rainfall in austral autumn (MAM) and 
spring (SON). In MAM, the models are typically most accurate in the north west of the 
continent, except P24, which is accurate in the south east. The ECMWF model has the highest 
accuracy in winter (JJA), although P24 is also reasonably skilful in this season. In SON, all 
models are accurate in the centre and east of the continent. Austral summer (DJF) is typically 
the least skilful season for all modelsexcept the UKMO model, which has high accuracy in 
Western Australia.  
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Fig.1 Accuracy score for P15b, P24, and ECMWF, UKMO and MF models, for a lead time of one month. 
Probabilistic forecasts for P15b, and for P24a, P24b and P24c which contribute to P24, were generated 
from the average of forecasts based on nine randomly selected ensemble members, as described in 
Section 3. An accuracy score greater than 50 per cent (indicated by green or blue grid points) is 
considered skilful. 

SON is the most consistently skilful season for all models. This stems from the fact that El 
Niño-Southern Oscillation (ENSO), which is the most predictable mode of variability in the 
climate system, has the strongest impact on rainfall across Australia in this season (McBride 
and Nicholls 1983). Due to this prominence of ENSO’s impact in spring, forecast skill at a lead 
time of four months (Fig. 2) remains high while it decreases in all other seasons.  

Interestingly, the models that showed high overall accuracy in particular seasons at the short 
lead time are no longer the most overall accurate models at longer lead time. This suggests that 
the high skill at short lead timeis partly due to accurate atmosphere/ocean initial conditions, like 
that of the ECMWF model in JJA. While the MF model shows only moderate accuracy at the 
short lead time, it does not show the large decrease in accuracy with lead time seen in the other 
models.  
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Fig.2As for Fig. 1, for a lead time of four months. 

The other ENSEMBLES models not shown here have similar patterns of common areas of 
accuracy.  For example, they show high accuracy in the centre and east of Australia in SON, 
and a lack of accuracy in DJF. The INGV model has the lowest overall accuracy of the 
ENSEMBLES models.  

As another measure of forecast accuracy, the correlation of the ensemble mean rainfall 
prediction from the individual models with the observations is shown in Fig. 3. Although 
correlation is a deterministic assessment of forecast skill, it shows similar patterns to the 
accuracy scores for probabilistic forecasts seen in Fig. 1. There is a positive correlation to the 
observations (greater than 0.6 in large areas) of the MAM and SON rainfall forecasts. There is 
strong positive correlation with the observations (greater than 0.7) for P24 in MAM, ECMWF 
in JJA, and UKMO in MAM and DJF. Strong negative correlation (less than -0.7) is seen in the 
south of the continent in JJA and DJF. This corresponds to regions of low accuracy (less than 25 
per cent correct) in Fig. 1.  
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Fig.3Correlation of ensemble mean with observationsfor the indivdiual models, for a lead time of one 
month. 

The correlation with observations decreases with lead time for all seasons and models (not 
shown). The smallest decrease is seen in SON. The regions of high positive correlation in MAM 
and JJA in the ECMWF, UKMO and POAMA models become negative or uncorrelated with 
the observations at the longer lead time.  

4.2 Reliability, Resolution, Sharpness 

In order for a dynamical forecast to be valuable and practically applicable, it must be reliable as 
well as accurate. A reliable forecast predicts an event with a probability that corresponds to the 
frequency with which the event is observed, when considered over many forecasts. An accurate 
probabilistic forecast has resolution and sharpness, as well as reliability.  
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Fig.4Attributes diagrams for the individual models, for all four seasons and two lead times combined. The 
y-axis is the relative observed frequency, the x-axis the forecast probability (average of forecasts within the 
probability bin). The solid line shows perfect reliability. The dashed line is the no-skill line, which borders 
the shaded area indicating skilful forecasts. 

The reliability of forecasts can be represented on a reliability diagram or attributes diagram, 
where the relative observed frequency of an event is plotted against the forecast probability, 
which is divided into a number of bins (e.g., Wilks 1995).  In this report, ten probability bins are 
equally spaced between 0 and 100 per cent. A reliable forecast will lie along the diagonal 1:1 
line, such that the event is observed to occur on a fraction of occasions equal to the probability 
with which it was forecast. A reliability or attributes diagram requires pooling forecasts across 
seasons, lead times or locations in order to increase the sample size. If the forecasts from grid 
points are pooled into a reliability diagram, a reliable forecast will then have the event occurring 
at a certain fraction of locations, not just on a certain proportion of occasions. 

Figure 4 shows the attributes diagrams for the individual models pooled over all four seasons 
and two lead times for above median rainfall forecasts using all land points over Australia. The 
size of the data points correspond to the fraction of forecasts in that probability interval. The 
dashed line indicates the no-skill line, bordering the shaded area which represents the region 
where a forecast will contribute positive skill to the Brier Skill Score when compared to 
climatology (see Equation (4) below). Note that the attributes diagrams in this report show data 
points corresponding to the average of the forecasts in each bin rather than the central value 
(Brocker and Smith 2007) so that a reliable forecast will accurately lie on the solid 1:1 line. 
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An attributes diagram is a reliability diagram which includes a representation of resolution and 
sharpness, indicated by the size of the data point in each frequencybin being proportional tothe 
number of forecasts in that bin. Sharpness is the tendency of the forecast to predict extreme 
values away from climatology. For a probabilistic forecast, this is indicated by large data points 
near 0 and 100 per cent. Resolution is the ability of the forecast to discriminate between events 
and non-events, such that a different forecast results in a different distribution of outcomes. If 
the data points lie along the horizontal at a relative observed fraction of 0.5, the forecast is said 
to have zero resolution. This means that climatology is observed, no matter what was forecast. 
If the data points are grouped around a forecast of 50 per cent probability, the forecast cannot 
discriminate from a climatological forecast, and is said to lack sharpness and resolution, 
although it may be perfectly reliable. Sharpness and resolution are properties of the forecast 
only, and an incorrect forecast may have these attributes.  

Forecasts from all of the models considered here are overconfident and lack reliability and 
resolution, as they have a shallower gradient than the perfectly reliable (diagonal solid) line. 
POAMA version P24 is the most reliable individual model, and is much more reliable than the 
earlier version P15b. ECMWF also shows moderate reliability, with some forecasts lying on or 
near the no skill line. All of the models show reasonable resolution, although in individual low 
skill seasons such as DJF or at the longer lead time they are likely to have forecast probabilities 
which do not depend on the number of eventsobserved. Combining all the seasons and lead 
times together as we have done in Fig. 4 allows the consistency of the models to be more easily 
assessed, and gives a better indication of the value of the predictions because reliable forecasts 
are required at all times and locations. If the reliability error and resolution are assessed 
separately (see below), it can be seen how the models perform by season and lead time.  

A measure of the reliability and resolution of a forecast can be determined from the Brier Score 
(BS), which measures the magnitude of the probability forecast errors. The BS can be 
decomposed into three components (e.g. Wilks 2006); 
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where N is the total number of forecasts, K is the number of probability categories, nk is the 
number of forecasts in a probability category, f is the forecast probability, o the outcome of an 
event (equals one for an occurrence and zero for a non occurrence), ōk is the observed 
frequency, and ō is the observed climatology. A perfect forecast has a Brier score of zero.  

Forecast skill of the model can be compared to a climatological reference forecast using the BS 
score as the skill measure in the Brier Skill Score (BSS), which is a measure of percentage 
improvement of a forecast over a reference forecast. We note, however, that the BSS is 
negatively biased for small ensembles, as discussed in Muller et al (2005) and Weigel et al 
(2007a). A bias correction can be used with the Brier Skill Score to account for the small 
ensemble size. For a multi-model ensemble, the bias correction is based on the weighting of the 
individual models (Weigel et al 2007b). However, in order to avoid this problem of negative 
bias with the BSS when assessing different models with differing ensemble sizes, we will not 
consider the BSS. Instead, we will assess the components of the unbiased Brier Score, shown in 
Equation 4.  
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(a) (b)

 

Fig.5(a) Mean reliability error for the individual models as a function of season,for a lead time of one 
month. (b) For a lead time of four months.A low mean reliability error value indicates a more skilful 
forecast. 

The reliability error is the first term of the Brier Score (Equation 4); 
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A perfect reliability error score of zero indicates a 1:1 correspondence between the forecast 
probability and the relative observed frequency. 

The resolution is the second term of the Brier Score (Equation 4) and determines the ability of 
the forecast to differentiate from a climatological observation; 
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A forecast has good resolution if the outcome changes with a differing forecast probability. 
Although the forecast probability is not directly input into the resolution score, it is inherent in 
the relative observed frequency. Sharpness is generally the departure of the forecasts from 
climatology (as discussed above), but there is no mathematical formulation.  

Figure 5 shows the seasonality of the reliability error of rainfall forecasts for Australian land 
points at lead time one and four months. MAM and SON are the most reliable seasons for all 
models. Winter (JJA) is unusual in that two models have relatively low reliability error but three 
models have relatively high reliability error. There is a lack of reliability in all models in DJF. 
The seasons that the individual models are more accurate are also the seasons where the models 
are more reliable.  

POAMA version P24 (blue, dotted line) is seen to be the most reliable model in MAM and SON 
as it has the lowest reliability error. The ECMWF model (purple, dashed line) is the most 
reliable ENSEMBLES model, and slightly more reliable than P24 in JJA. In MAM and DJF, the 
UKMO model (orange, dashed line) shows high reliability at the short lead time, butthis 
decreases at the longer lead time. The MF model (red, dashed line) and POAMA version P15b 
(green, dotted line) show low reliability in all seasons and lead times, although the MF model 
does not decrease in reliability at the longer lead time by as much as the other models. At a lead 
time of four months, the SON forecasts remain reliable or become more reliable.  
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Fig.6(a) Mean resolution for the individual models as a function of season,fora lead time of one month.(b) 
For a lead time of four months.  A high resolution indicates a more skilful forecast. 

Figure 6 shows the seasonality of the resolution of the models at lead time one and four months. 
The seasonality of the resolution of the models is similar to the seasonality of the reliability 
error. A noticeable difference is the MF model, which has the highest resolution in SON at the 
shorter lead time. 

POAMA version P24 does not have the highest resolution of the models, despite its high 
accuracy and reliability. This lack of resolution can be seen in the attributes diagrams in Fig. 4, 
as the larger data points closer to the 50 per cent forecast probability indicate a larger number of 
close to climatological forecasts than emphatic forecasts.  

In summary, POAMA version P24 shows consistent improvements for forecast accuracy, 
reliability and resolution over P15b. Compared to the operational models that have contributed 
forecasts to the ENSEMBLES projects, overconfidence and lack of reliability for their regional 
rainfall forecast is a common problem. P24 is the most consistently reliable of the models 
considered here, although each of the European models shows varied strengths for particular 
seasons or lead times. In particular, the ECMWF model is highly accurate and reliable in JJA at 
the shorter lead time. The UKMO model stands out as highly accurate and reliable in MAM and 
DJF at the shorter lead time.  

5 MULTI-MODEL ENSEMBLES 

In order to assess the benefit of combining these strengths and weaknesses of the individual 
models, the ENSEMBLES hindcasts from ECMWF, UKMO and MF were combined into a 27 
member multi-model ensemble (referred to as MME(a)). These three models were selected as 
they are the current EUROSIP partners, and operational versions are available to partner 
institutions. 

These three models were also combined with the 27 member version of POAMA, P24, into a 
multi-model ensemble with a total of 54 members (referred to as MME(b)). The increase in 
accuracy and reliability can therefore be assessed compared to the individual versions of these 
contributing models.  
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Fig.7 Accuracy score for P24 (as before) and two multi-model ensembles, for a lead time of one month. 
MME(a) corresponds to the multi-model ensemble of ECMWF, UKMO and MF models, with nine members 
each. MME(b) corresponds to the multi-model ensemble of ECMWF, UKMO and MF models, nine 
members each, plus the P24 model, which was created from nine members of each of P24a, P24b and 
P24c. 

5.1 Accuracy 

Figures 7 and 8 show the accuracy scores for P24 and the multi-model ensembles at a lead time 
of one month and four months respectively. These figures are equivalent to Figs. 1 and 2 for the 
individual contributing models. The multi-model ensemble results show high accuracy scores 
across areas similar to the best individual models in particular seasons; this is particularly 
evident at the shorter lead time of one month. At the longer lead time, the contributing models 
have similar regions of skill. Overall, the multi-models are seen to be more accurate than each 
of the individual models.  

The contribution of P24 to the multi-model ensemble MME(b), results in higher accuracy in 
JJA and SON, compared to MME(a). In MAM, MME(b) is more accurate in the south east of 
Australia, while MME(a) is more accurate in the north-west. This accuracy in the south east 
comes from the strength of P24 in this region. The accuracy of MME(b) in the west in JJA is 
due to the high accuracy of P24 and ECMWF in this region. In SON, the strength of all of the 
models results in high accuracy of MME(b) at both lead times. In DJF, the two multi-models 
have a similar lack of accuracy, except in the west, which is a strength of the European models, 
as seen in MME(a). The multi-model ensemble is beaten by the UKMO individual model in 
terms of accuracy in DJF. However, the multi-model is more accurate than this model in the 
other seasons, illustrating the benefit of the more consistently accurate multi-model ensemble.  



 

21 

JJA SON DJFMAM

P24

MME(a)

MME(b)

 

Fig.8As for Fig. 7, for a lead time of four months. 
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Fig.9Correlation of ensemble mean with observations of P24 and the multi-model ensembles for a lead 
time of one month. 
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Fig.10Attributes diagrams for P24 and the multi-model ensembles, for all four seasons and two lead times 
combined. 

At the longer lead time of four months (Fig. 8), the multi-model ensembles are accurate in SON, 
particularly in the south east, and in the far west of Australia in DJF. This lack of accuracy in 
the other seasons is due to the lack of accuracy in the contributing models at the longer lead 
time. The benefit of a multi-model ensemble comes from the strengths of independent models 
combining together for a more consistent forecast and the cancellation of uncorrelated error. 
When the models have similar weaknesses, the multi-model ensemble is unable to improve the 
forecast accuracy. The multi-model ensemble will not be worse than the worst model at each 
season however, as the additional information in the other models will increase the accuracy 
compared to the worst model.  

For the multi-model ensembles, the correlation of the ensemble mean rainfall anomaly with 
observations (Fig. 9) is not noticeably increased compared to the individual models (Fig. 3). 
The correlation is more consistently positive, with minimal regions of negative correlation, but 
the magnitude of the positive correlation is not increased compared to the individual models. 
For example, P24 has a higher correlation of predicted to observed season rainfall in the south 
east in MAM compared to either multi-model ensemble. This measure of deterministic accuracy 
does not take into account the increased spread of the model that will benefit the probabilistic 
forecasts by increasing the reliability.  

5.2 Reliability, Resolution, Sharpness 

Figure 10 shows the attributes diagrams for P24 and the two multi-model ensembles, where the 
forecasts from the four seasons and two lead times have been collected together, as in Fig. 4. 
Both multi-model ensembles are more reliable than the individual models, as seen by data 
pointsbeing closer to the diagonal solid line. MME(a) is similar to P24 at forecast probabilities 
less than 50 per cent, but more reliable at the higher forecast probabilities. MME(b) is more 
reliable than MME(a), but a larger proportion of the forecasts are closer to a 50 per cent 
probability, as was seen for P24 compared to the other individual models.  
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Fig.11(a) Mean reliability error as a function of season, for multi-model ensembles compared to individual 
models, for a lead time of one month. (b) For a lead time of four months. 

(a) (b)

 
Fig.12(a) Mean resolution as a function of season, for multi-model ensembles compared to individual 
models, for a lead time of one month. (b) For a lead time of four months. 

The continent averaged reliability error (Equation 5) of the multi-models compared to the 
individual contributing models is shown in Fig. 11 for lead times of one month and four months. 
The solid grey line indicates the seasonality of the reliability of MME(a). The solid black line 
corresponds to MME(b), which is consistently more reliable than MME(a) and all individual 
models for all seasons and lead times. At lead time one month, MME(a) is more reliable than 
the majority of the contributing individual models (dashed lines), and the individual model 
which is more reliable than MME(a) differs depending on the season. At the longer lead time, 
MME(a) is more reliable than all contributing individual models. The reliability of P24 (blue 
dotted line), discussed in Section 4.2, contributes to the strength of MME(b).  

The average resolution over Australia of the multi-model ensembles compared to the individual 
models is shown in Fig. 12. The multi-model ensembles have higher resolution than most of the 
individual models, however they have similarly low resolution in DJF and at the longer lead 
time in JJA. There are a larger proportion of forecasts issued closer to 50 per cent, as seen in 
Fig. 10. However, the models still have high resolution due to their good reliability.  

5.3 Relative Operating Characteristic 

To assess whether the models are skilful and well-discriminated, the relative operating 
characteristic (ROC) was calculated. Discrimination depends on the distribution of forecasts 



 

24   Assessment of international seasonal rainfall forecasts for Australia and the benefit of multi-model ensembles for 
improving reliability  

given the different outcomes (Murphy and Winkler 1987). ROC curves are constructed from the 
hit rate plotted against the false alarm rate for an increasing probability threshold cutoff. The 
area under the curve is taken to be the ROC score. The hit rate is the number of occurrences of 
the event corresponding to forecasts up to the threshold, divided by the total number of times 
the event was observed. The false alarm rate is the number of non-occurrences of the event 
corresponding to forecasts up to the same threshold, divided by the total number of times the 
event did not occur.  

The hit rate: 

HR(t) = P(p ≥ t | x = 1)  (7) 

and false alarm rate: 

FAR(t) = P(p≥ t | x = 0)  (8) 

where p is the forecast probability, t is the increasing threshold and x = 1 when the event 
occurred and x = 0 when the event did not occur.  

The ROC curve stretches from the origin (0,0) to the point (1,1). For a perfectly discriminated 
forecast, the area under the curve equals unity. A diagonal line and a ROC score of 0.5 indicates 
that hits and false-alarms occur at the same rate, which implies no skill.  

An example ROC curve is shown in Fig. 13, for a single grid point over south east Australia in 
SON for MME(b) at a lead time of one month. The area under the curve is equal to 0.805, 
indicating a relatively well-discriminated forecast. Figure 14 shows the average ROC score for 
each model, where the area under the ROC curve has been calculated for each grid point over 
Australia and averaged at each season and lead time.  

 
 

Fig.13ROC curve for a single grid point located over south east Australia at 31oS 145oE for MME(b) in 
SON at lead time one month. The grey dashed line indicates the no skill line. The area under the curve, 
(which is taken as the ROC score) is equal to 0.805. The solid data points indicate the hit rate and false 
alarm rate for the ten probability thresholds, equally spaced between 0 and 100 per cent. 

The resulting seasonality of the ROC scores is quantitatively similar to that of the average 
resolution shown in Figs 6 and 12 (Kharin and Zwiers, 2003). These two attributes are similar, 
but while resolution is a measure of the distribution of the outcomes given the forecast, the 
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ROC score is a measure of the distribution of the forecasts given the outcome. They are 
therefore related measures of the quality of a forecast system. High resolution means that the 
outcome is well conditioned on the forecast, whereas a well-discriminated forecast will depend 
on the outcome (Mason and Stephenson, 2007).  

The multi-model MME(b), which is more reliable than all of the contributing models, is 
consistently the most accurate or second most accurate model across all seasons in terms of the 
average ROC score. The ECMWF model in JJA and the UKMO model in DJF have the highest 
ROC score. MME(a) is similarly beaten by these skilful models, and by P24 in SON. The 
inclusion of P24 in the multi-model ensemble increases the skill in JJA and SON.  

(a)

(b)

 

Fig.14(a) Continent averaged ROC scores as a function of season, for P15b (green dotted), P24 (blue 
dotted), ECMWF (purple dashed), UKMO (yellow dashed), MF (red dashed) and the multi-model 
ensembles (grey and black solid), for a lead time of one month. (b) For a lead time of four months. 
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Fig.15 Continent averaged ROC scores for a lead time of one month. The grey solid line corresponds to 
the multi-model ensemble of ECMWF, UKMO and MF models, MME(a), where each of the three 
contributing models has nine members (27 total).The black solid line corresponds to the multi-model 
ensemble of P24, ECMWF, UKMO and MF models, MME(b), where each of the six models have nine 
ensemble members. The black dashed line corresponds to MME(b) calculated with only five ensemble 
members for each of the six models, such that the total number of ensemble members is comparable with 
MME(a). 

At the longer lead time of four months, the skill of all models decreases, except for in SON, and 
the MF and ECMWF models in DJF. The individual models with the highest skill are ECMWF 
in MAM and DJF, and UKMO in JJA and SON, which is opposite to the shorter lead time 
results. The more skilful individual models at the shorter lead time show larger decreases in 
average ROC score at the longer lead time. MME(a) is more skilful than MME(b) at the longer 
lead time, due to the decrease in skill of P24 relative to the European models.  

The resulting average ROC score time series is very similar to the resulting average accuracy 
score (not shown, area average of Figs 1, 2, 7 and 8) over the continent. Therefore we will also 
use the ROC score as a measure of skill in order to compare a multi-model ensemble with 
varying numbers of ensemble members. 

Forecast skill will increase with increasing ensemble members, due to the increase in initial 
conditions sampled, which will decrease the uncertainty. In order to determine if the increase in 
skill between the two multi-model ensembles is due to the added benefit of the strengths of P24, 
or the increase in the number of ensemble members, we have created the equivalent of MME(b) 
with a smaller subset of ensemble members, comparable to MME(a). Five ensemble members 
are randomly selected without replacement from each of the contributing models, a multi-model 
probabilistic forecast is generated, and the ROC score is calculated. This is averaged over 100 
Monte Carlo runs from random selections of members. This process is also repeated for nine 
ensemble members per model. The resulting ROC scores are shown in Fig. 15.   
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The solid black line in Fig. 15 shows the average ROC score for MME(b), and the dashed black 
line shows MME(b) with a reduced number of ensemble members. There is only a slight 
decrease in skill as measured by the average ROC score, despite a decrease in the total 
ensemble size from 54 to 30 members. The grey solid line corresponds to the MME(a) multi-
model, with a total of 27 ensemble members, which is comparable to the reduced size version of 
MME(b) shown by the dashed black line. The increase in skill of MME(b) over MME(a) is 
larger than the increase seen due to the larger ensemble size. Therefore the higher skill of 
MME(b) is due to the reduced model error with the addition of P24 to the multi-model 
ensemble.  

6 CONCLUSION 

In this report we assessed forecasts from POAMA versions P15b and P24 in comparison to 
forecasts from models from ECMWF, UKMO and MF, which are archived as part of the 
ENSEMBLES project. The aim wasto determine how universal the lack of reliability is in 
dynamical forecasts of regional rainfall, in order to highlight any potential for improvement of 
the POAMA system. The ENSEMBLES project provides an easily accessible database of 
hindcast datasets for European models from ECMWF, UKMO, MF, CMCC-INGV and IFM-
GEOMAR.  

The systems assessed in this report show that overconfidence and lack of reliability for regional 
rainfall forecasts is a common problem amongst international coupled dynamical models. The 
individual models showed similar accuracy, but POAMA version P24 demonstrated higher 
reliability than the ECMWF, UKMO and MF models, as well as the older POAMA version, 
P15b.  

Multi-model ensembles are a useful tool for utilising the strengths of a range of independent 
models to increase the reliability and accuracy of climate predictions. The combination of 
individual models into a multi-model ensemble benefits from the cancellation of uncorrelated 
error, increased spread and reduced model error. Two multi-model ensembles were assessed for 
accuracy and reliability compared to the contributing forecasts. Both multi-model ensembles 
included forecasts from ECMWF, UKMO and MF. The multi-model ensemble which also 
included P24 showed consistently higher reliability and ROC scores than the MME without 
P24. This increase in skill of the multi-model ensemble with addition of POAMA was shown to 
be due to reduced model error rather than an increase in ensemble size. These results indicate 
that there is benefit in adding POAMA version P24 to the available EUROSIP operational 
models from ECMWF, MF and UKMO, to increase the reliability and consistency of accurate 
regional rainfall forecasts.  

Therefore, due to the clear need for improved reliability and more accurate seasonal rainfall 
forecasts for hydrological applications, we recommend further investigation of adopting an 
operational multi-model ensemble combining P24 with available European datasets.  
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APPENDIX A 

Table 5The following fields are accessible from this directory by the folder labelled by their corresponding 
GRIB codes. (http://ensembles.ecmwf.int/download/ensembles/stream2/seasonal/atmospheric/monthly/.) 

Field Units Code 

Geopotential m2/s2 129 

Temperature K 130 

Zonal wind m/s 131 

Meridional wind m/s 132 

Specific humidity kg/kg 133 

Surface temperature (sea surface temperature over open waters, ice 
temperature over ice and temperature of the first soil layer over land) 

K 139 

Snow depth m of water 141 

Surface sensible heat flux Ws/m2 146 

Surface latent heat flux Ws/m2 147 

Mean sea level pressure Pa 151 

Total cloud cover [0,1] 164 

Zonal component of 10m wind m/s 165 

Meridional component of 10m wind m/s 166 

2m temperature (Note for UK Met Office this is the 1.5m temperature) K 167 

2m dewpoint temperature K 168 

Surface downward solar radiation Ws/m2 169 

Surface downward longwave radiation Ws/m2 175 

Surface net solar radiation Ws/m2 176 

Surface net longwave radiation Ws/m2 177 

Top net solar radiation Ws/m2 178 

Top net longwave radiation Ws/m2 179 

Moisture flux from the surface into the atmosphere or evaporation m of water 182 

2m Tmax (Note for UK Met Office this is the 1.5m temperature) K 201 

2m Tmin K 202 

Total precipitation m of water 228 

Vertically integrated volumetric soil water m3/m3 229 

 

The ocean reanalysis fields available by research centre at 
http://ensembles.ecmwf.int/download/ocean/. 
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The following web pages have information about the ocean reanalysis. 
http://www.ecmwf.int/research/EU_projects/ENSEMBLES/data/ 

oras3_disclaimer.html     ECMWF 

ifmkan_disclaimer.htm     IfM_GEOMAR 

crfcan_disclaimer.htm     CERFACS 

ingvan_disclaimer2.htm     INGV 

metofficean_disclaimer.htm    Met Office 

 

Table 6 The ocean reanalysis fields for the ENSEMBLES models 

Field Units Code 

Potential temperature K 129 

Salinity PSU 130 

Zonal velocity m/s 131 

Meridional velocity m/s 132 

Vertical velocity m/s 133 

Sea level m 145 

Mixed layer depth m 148 

20 C isotherm depth m 163 

Average potential temperature in the upper 300m. K 164 

. 
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