
 

 

The Centre for Australian Weather and Climate Research 
A partnership between CSIRO and the Bureau of Meteorology 

 
 
 

Dynamical seasonal prediction of tropical Indo-Pacific SST 
and Australian rainfall with improved ocean initial conditions 
 
Eun-Pa Lim, Harry H. Hendon, Oscar Alves, Yonghong Yin, Guomin Wang, Debra Hudson,       
Mei Zhao and Li Shi 
 
CAWCR Technical Report No. 032 
 
October 2010 





 

Dynamical seasonal prediction of tropical Indo-
Pacific SST and Australian rainfall with improved 

ocean initial conditions 
 
 

Eun-Pa Lim, Harry H. Hendon, Oscar Alves, Yonghong Yin,  
Guomin Wang, Debra Hudson, Mei Zhao and Li Shi  

  
 

The Centre for Australian Weather and Climate Research  
- a partnership between CSIRO and the Bureau of Meteorology 

 
 

CAWCR Technical Report No. 032 
 

October 2010 
 

  

ISSN: 1836-019X 

National Library of Australia Cataloguing-in-Publication entry  

Author: Eun-Pa Lim et al. 
 
Title: Dynamical seasonal prediction of tropical Indo-Pacific SST and Australian 
rainfall with improved ocean initial conditions. 
 
ISBN: 978-1-921826-09-2 (Electronic resource) 
 
Series: CAWCR technical report; 32. 
 
Notes: Included bibliography references and index. 
 
Subjects:  Ocean temperature.  

Rain and rainfall--Australia.  
Ocean-atmosphere interaction. 

 
 
Other Authors / Contributors; Harry H. Hendon, Oscar Alves, Yonghong Yin, Guomin 
Wang, Debra Hudson, Mei Zhao, Li Shi and Keith Day (Ed) 
 
Dewey Number: 551.5 

 
 
 
 



Enquiries should be addressed to:  
Eun-Pa Lim 
Centre for Australian Weather & Climate Research  
GPO Box 1289 Melbourne 
Victoria 3001, Australia 
 
E.Lim@bom.gov.au 

 

 

 

 

 

 

 

 

 

 

Copyright and Disclaimer 

 

All images reproduced in grayscale. A colour version of CAWCR Technical Report No.032 
is available online: http://www.cawcr.gov.au  

© 2010 CSIRO and the Bureau of Meteorology. To the extent permitted by law, all rights are 

reserved and no part of this publication covered by copyright may be reproduced or copied in any 

form or by any means except with the written permission of CSIRO and the Bureau of Meteorology. 

CSIRO and the Bureau of Meteorology advise that the information contained in this publication 

comprises general statements based on scientific research. The reader is advised and needs to be 

aware that such information may be incomplete or unable to be used in any specific situation. No 

reliance or actions must therefore be made on that information without seeking prior expert 

professional, scientific and technical advice. To the extent permitted by law, CSIRO and the Bureau 

of Meteorology (including each of its employees and consultants) excludes all liability to any person 

for any consequences, including but not limited to all losses, damages, costs, expenses and any other 

compensation, arising directly or indirectly from using this publication (in part or in whole) and any 

information or material contained in it. 



 

 i

CONTENTS 

Contents..........................................................................................................................i 

List of Figures ...............................................................................................................ii 

List of Tables................................................................................................................iii 

1 Introduction..........................................................................................................1 

2 POAMA model features.......................................................................................2 

2.1 Atmosphere and Land Initialisation .......................................................................... 2 

2.2 Ocean Initialisation ................................................................................................... 3 

2.3 Model bias correction ............................................................................................... 4 

2.4 Forecast verification.................................................................................................. 5 

3 Results..................................................................................................................6 

3.1 Indo-Pacific SST indices........................................................................................... 6 

3.2 Australian rainfall .................................................................................................... 12 

4 Summary and concluding Remarks.................................................................20 

Acknowledgements ....................................................................................................22 

References...................................................................................................................23 

Appendix A – Procedure of flux correction ..............................................................26 
 
 
 
 
 
 
 
 
 
 
 



Dynamical seasonal prediction of tropical Indo-Pacific SST and Australian rainfall with improved ocean initial conditions ii 

LIST OF FIGURES 

Fig. 1 Correlation of monthly T300 anomaly from (a) PEODAS and (b) PODAS with the 
observed analysis (EN3) for the period of 1982-2006. .....................................................4 

Fig. 2 Difference between the climatologies of predicted SST from (a) POAMA1.5b, (b) 
POAMA2.4a (non-flux corrected version) and (c) POAMA2.4b (flux corrected 
version) and observed mean SST (HadISST; Rayner et al. 2003) at 0, 3 and 6 
months lead time (LT 0, LT 3 and LT 6, respectively) for the period 1980-2006. 
Positive (negative) values mean that POAMA predicts higher (lower) SST than 
observation on average. The contour interval is 0.5 °C. ...................................................5 

Fig. 3 (a) Regression of monthly SST anomaly on NINO3 index (left), El Niño Modoki 
Index (EMI; middle), and Indian Ocean Dipole Mode Index (DMI; right), (b) 
Correlation of seasonally averaged Australian mean rainfall (left) and south eastern 
Australian mean rainfall with NINO3, EMI and DMI. .........................................................7 

Fig. 4 Correlation of predicted (a) NINO3, (b) EMI and (c) DMI from POAMA1.5b (P1.5b), 
POAMA2 non-flux corrected version (P2.4a), POAMA2 flux corrected version 
(P2.4b) and persistence forecast verified against respective observed indices using 
the HadISST data set. Every month in 1980-2006 was used in forming the indices. 
(d) The same as (c) except verified against the observed DMI from the Reynolds 
SST data set......................................................................................................................9 

Fig. 5 Normalised root-mean-square-error (NRMSE) of predicted (a) NINO3, (b) EMI and 
(c) DMI from P1.5b, P2.4a and P2.4b. RMSEs of the predicted indices were 
normalised by the standard deviations of the respective observed indices from the 
HadISST data set. Every month in 1980-2006 was used in forming the indices. (d) 
The same as (c) except using the observed DMI from the Reynolds SST data set. ......10 

Fig. 6 Normalised standard deviation of predicted (a) NINO3, (b) EMI and (c) DMI from 
P1.5b, P2.4a and P2.4b (Standard deviations of the predicted indices were 
normalised by the standard deviations of the respective observed indices from the 
HadISST data set). Every month in 1980-2006 was used in forming the indices. (d) 
The same as (c) except using the observed DMI from the Reynolds SST data set. ......11 

Fig. 7 The 2x2 contingency table of predicting a dichotomous event. The letters a, b, c, 
and d indicate the frequencies of four different types of forecast and observation 
pairs for a dichotomous event (taken from Lim et al. 2009, their figure 10)....................12 

Fig. 8 Proportion correct of forecasts for rainfall being above the median at lead time 0 (LT 
0) for the hindcast period (1980-2006). (a) P1.5b, (b) P2.4a, (c) P2.4b and (d) multi-
model ensemble system consisting of the three versions of POAMA. ...........................13 

Fig. 9 The same as Fig. 8 except at lead time 3 (LT 3) months................................................14 

Fig. 10 Skill score using proportion correct that is computed by the multiplication of the 
fraction of the number of grid points over Australia whose proportion correct is 
equal to or greater than 60% by the average proportion correct over those grid 
points. ..............................................................................................................................16 

Fig. 11 Attributes diagram of POAMA prediction of above median rainfall at LT 0, using 27 
years of hindcasts over all grid points of Australia. (a) P1.5b, (b) P2.4a, (c) P2.4b 
and (d) multi-model ensemble system consisting of the three versions of POAMA. ......17 



 

 iii

Fig. 12 Mean reliability error (left) and mean resolution (right) of the forecasts from the 
three versions of POAMA and the multi-model ensemble system in predicting above 
median rainfall at (a) LT 0 and (b) LT 3. .........................................................................20 

 

LIST OF TABLES 

Table 1  Overview of model configuration of POAMA1.5b and POAMA2 .................................... 6 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

 1

1 INTRODUCTION 

The Australian Bureau of Meteorology (BoM) jointly with the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) has developed a dynamical intra-seasonal to seasonal 
climate forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA; Alves 
et al. 2003), in order to provide improved seasonal prediction of the Australian climate. The 
current operational version of the POAMA system (version 1.5b) generates a 9 month forecast 
each day. These forecasts are primarily used for tropical Pacific sea surface temperature (SST) 
variations associated with the El Niño-Southern Oscillation (ENSO), which is a main driver of 
the Australian seasonal climate. 

The POAMA system is continuously being developed and improved. Because seasonal climate 
prediction is an initial value problem (whose solution depends on the conditions specified at the 
starting time (t0)), the quality of the forecast depends directly on the quality of the depiction of 
the initial atmosphere-ocean state at the start of the forecast. A major upgrade for POAMA1.5b 
was the initialisation of the forecast system with more realistic conditions of the atmosphere and 
land surface. These improved atmosphere-land surface initial conditions were generated by an 
Atmosphere and Land Initialisation scheme (ALI; Hudson et al. 2010), which was developed 
during the South Eastern Australian Climate Initiative phase 1 (SEACI-1). The improved skill 
for predicting ENSO as a result of the improved atmosphere-land initial conditions provided by 
ALI is reported in detail in Hudson et al. (2010) and is briefly discussed in the next section.  

The next major upgrade for POAMA is the improvement of the ocean initial conditions, which 
are at the heart of making seasonal climate predictions - it is the upper ocean that provides 
predictability to ENSO through equatorial wave propagations, and a model’s ability to skilfully 
predict the evolution of the upper ocean significantly relies on the quality of the ocean initial 
conditions. In POAMA1.5b, the ocean initial conditions were produced from the POAMA 
Ocean Data Assimilation Scheme (PODAS). PODAS is based on a univariate optimum 
interpolation (OI) technique of Smith et al. (1991) that assimilates in situ temperature 
observations in the upper 500 m of the ocean (Wang et al. 2002).  

The new state-of-the-art, ensemble-based ocean data assimilation scheme included in the newer 
version of POAMA (POAMA2) is called the POAMA Ensemble Ocean Data Assimilation 
System (PEODAS; Yin et al. 2010). PEODAS assimilates not only ocean temperature but also 
salinity. A unique feature of PEODAS is that for any point in time it produces an ensemble of 
equivalent ocean states that represent observational uncertainties. The ensemble of ocean states 
is then directly used as perturbed initial conditions for ensemble forecasts. Yin et al. (2010) 
show conclusively that the depiction of the upper ocean in PEODAS is significantly more 
realistic, accurate and dynamically/thermodynamically consistent, compared to that in PODAS.  

The aim of this study is, therefore, to assess the impact of these improved ocean initial 
conditions on forecast skill of tropical Indo-Pacific SSTs and Australian rainfall. We will also 
explore the extent that multi-model ensembling, based on available versions of POAMA 
(currently three versions – POAMA1.5b and two versions of POAMA2), can improve regional 
rainfall forecasts.  

We describe POAMA2 model features, the hindcast data sets and verification methods in 
section 2. In section 3, SST and Australian rainfall forecast skill using POAMA2 is evaluated in 
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comparison to that of POAMA1.5b. Also, performance of a multi-model ensemble system 
consisting of POAMA1.5b and two different versions of POAMA2 is examined. Lastly, 
concluding remarks are provided in section 4. 

2 POAMA MODEL FEATURES 

The POAMA forecast system is based on coupled atmosphere and ocean models. The 
atmospheric model is the BoM Atmospheric Model version 3 (BAM3.0; Colman et al. 2005) 
and the ocean model is the Australian Community Ocean Model version 2 (ACOM2; Schiller et 
al. 2002, Oke et al. 2005). The horizontal structure of BAM3.0 is represented by spherical 
harmonics with a triangular truncation at wave number 47 (denoted T47, which has 
approximately 250 km resolution), and the vertical variation is represented by 17 sigma levels. 
BAM3.0 is used for both POAMA1.5b and POAMA2, but BAM3 in POAMA2 has improved 
atmospheric model physics associated with shallow convection.  

POAMA’s ocean model, ACOM2 has a zonal resolution of 2° longitude and a telescoping 
meridional resolution of 0.5° latitude within 8° latitude of the equator, gradually changing to 
1.5° latitude near the poles. ACOM2 has 25 vertical levels, with 12 levels in the top 185 m. The 
atmosphere and ocean models are coupled every 3 hours by the Ocean Atmosphere Sea Ice Soil 
(OASIS) coupling software (Valke 2000).  

2.1 Atmosphere and Land Initialisation 

For both POAMA1.5b and POAMA2, atmosphere and land initial conditions are provided by 
ALI (Hudson et al. 2010). ALI nudges the BAM atmospheric model toward global analyses of 
zonal and meridional winds, temperature, and humidity. For the hindcast period, ALI nudges 
toward the ERA-40 reanalyses (Uppala et al. 2005) during 1980-2001 and to the global analyses 
from the BoM’s numerical weather prediction system (GASP) during 2002-2006. For use in real 
time, ALI nudges to the analyses from GASP that are routinely produced at BoM in real time. 
Through this nudging toward a reanalysis, ALI produces atmosphere conditions that are very 
similar to the ERA-40/GASP analyses. However, less initial forecast shock is generated than if 
the ERA-40/GASP analyses were directly used as initial conditions in BAM3.0. Although the 
land surface fields are not directly nudged, land surface initial conditions are created indirectly 
in response to the nudged atmospheric conditions.  

Hudson et al. (2010) document the increase in forecast skill resulting from the use of the 
realistic atmosphere/land initial conditions provided by ALI in POAMA1.5b as compared to 
POAMA1 (atmospheric initial conditions in POAMA1 contained no real information; they were 
generated as an atmospheric model response to imposed observed SST). In particular, Hudson et 
al. (2010) show that the use of ALI in POAMA1.5b results in improved skill for predicting the 
NINO3 and NINO3.4 SST indices with up to 6 month lead time1. 

                                                      
1 The period of time between the issue time of the forecast and the beginning of the forecast validity 
period (WMO users guide, http://www.bom.gov.au/wmo/lrfvs/users.shtml). For instance, a forecast for 
February at 1 month lead time is initialised on the 1st of January.  



 

 3

2.2 Ocean Initialisation  

As mentioned earlier, in POAMA1.5b ocean initial conditions are provided by PODAS (Wang 
et al. 2002), which is based on univariate OI technique (Smith et al. 1991). The OI scheme is 
used to correct the ocean model background temperature field every three days using a 3-day 
observation window. Only subsurface temperature observations in the top 500 m are 
assimilated. Salinity is not updated, and ocean current velocity is updated by its geostrophic 
relation to the temperature increments computed in the assimilation scheme (Burgers et al. 
2002). During the assimilation cycle, SST is strongly nudged to the observed SST analysis 
(Reynolds et al. 2002), which allows the model SST to be close to the observed.  

POAMA2 ocean initial conditions are provided by PEODAS, which is a simplified form of an 
Ensemble Kalman Filter (Yin et al. 2010). In this system, in situ temperature and salinity 
observations are assimilated to a central run every three days. As it is expected that the 
important source of background error for the ocean model is observational errors in surface 
wind stress and surface fluxes on intra-seasonal time, an ensemble of ocean states  is generated 
mainly by perturbing wind stress and surface fluxes. The ensemble of ocean states is then used 
to compute the background error covariances (i.e. covariance of the discrepancy between the 
true state and the model’s background estimate of the true state) for temperature, salinity and 
currents. Using these background error covariances, observed data are assimilated to the central 
run. After each analysis, the ensemble members are updated by nudging toward the analysis 
from the central run. A resultant ensemble of ocean conditions is used to initialise the ensemble 
of seasonal forecasts.  

According to Yin et al. (2010), PEODAS produces more realistic ocean initial conditions than 
does PODAS. As an example of an improvement in the ocean initial conditions, Fig. 1 displays 
correlation of monthly heat content anomaly in the upper 300m ocean (T300) from PEODAS 
and PODAS with a purely observational analysis, EN3 (based on the ENACT quality-controlled 
observation database; Ingleby and Huddleston 2007). The correlation of T300 from PEODAS is 
higher than that from PODAS over the tropical Pacific and western Indian Oceans, suggesting 
an improved depiction of the upper tropical oceans in PEODAS. Especially, the improvement in 
the initial conditions of T300 over the tropical Pacific implies the state of ENSO (which is as 
much a subsurface phenomenon as it is a surface phenomenon) to be better depicted by the 
POAMA2 system, which is confirmed in the later part of this report.  
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Fig. 1 Correlation of monthly T300 anomaly from (a) PEODAS and (b) PODAS with the observed 

analysis (EN3) for the period of 1982-2006.  

2.3 Model bias correction 

A common problem with coupled seasonal forecast models such as POAMA is that the 
simulated climate drifts as lead time increases. This is demonstrated in Figs 2a and 2b which 
show the bias of the climatology of SST from the POAMA1.5b and POAMA2 hindcasts (one 
forecast per month for the period 1980-2006) as a function of forecast lead time. Because the 
forecasts are initialized from the ocean conditions that are close to the observation, little bias is 
seen at 0 lead time. However, by three month lead time, a tropical-wide cold bias has 
developed, together with a warm bias off the coast of South America. By six month lead time 
the bias is nearly saturated with the bias ranging from -3°C to 6°C. Improved simulation of 
shallow convection in POAMA2 compared to POAM1.5b reduces the cold bias slightly (by ~ 
0.5°C) over the Pacific (Fig. 2b). Nonetheless, the cold bias over most of the oceans and the 
warm bias over the eastern Pacific basin off South America are still pronounced in POAMA2. A 
direct result of the cold bias in the equatorial Pacific is that the maximum variability in tropical 
Pacific SST that is associated with ENSO is shifted westward from the South American coast at 
increased lead times. Such drift in the SST variability hinders the model’s ability to discern 
differences in SST patterns between different types of ENSO events as lead time increases 
(Hendon et al. 2009).  

In order to alleviate the mean SST bias, a version of POAMA2 was configured with an explicit 
flux correction scheme. This scheme corrects biases in shortwave radiation, total heat flux and 
wind stress by adjusting model generated fluxes to be close to the observed counterparts from 
the Coordinated Ocean Research Experiments (CORE) version 2 data sets (Large and Yeager 
2009) for the hindcast period (see further details of the flux correction in Appendix A). As a 
result of this flux correction, the large cold and warm biases in the tropical Pacific are 
significantly reduced (Fig. 2c). Hereafter, we will refer to the flux corrected version as 
POAMA2.4b and the non-flux corrected version as POAMA2.4a. 

 (a) PEODAS     (b) PODAS 
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Fig. 2 Difference between the climatologies of predicted SST from (a) POAMA1.5b, (b) POAMA2.4a 
(non-flux corrected version) and (c) POAMA2.4b (flux corrected version) and observed mean SST 
(HadISST; Rayner et al. 2003) at 0, 3 and 6 months lead time (LT 0, LT 3 and LT 6, respectively) 
for the period 1980-2006. Positive (negative) values mean that POAMA predicts higher (lower) 
SST than observation on average. The contour interval is 0.5 °C. 

2.4 Forecast verification  

For this study, three different versions of POAMA are assessed – POAMA1.5b (P1.5b; non bias 
corrected) and two different versions of POAMA2 – non-flux corrected (P2.4a) and flux 
corrected (P2.4b) (Table 1). From each of these three versions, ten member ensemble 
retrospective forecasts were generated from the first day of each month for the period 1980-
2006. From P1.5b, the ten ensemble members were generated by perturbing the atmospheric 
initial conditions by using six-hour consecutively earlier atmospheric analyses from the first day 
of each month. Identical ocean initial conditions from PODAS were used for all 10 members. In 
comparison, ten member ensemble hindcasts of each of the two versions of POAMA2 were 
perturbed by ten different sets of ocean initial conditions provided by PEODAS on the first day 
of each month.  

Forecast skill for SST is evaluated using temporal correlation, normalized root-mean-square-
error and normalized standard deviation. For rainfall over the Australian region we assess the 
skill of probabilistic forecasts (based on ten ensemble members) of above median rainfall, using 
proportion correct (also called hit rate or percent consistent score) and attributes diagrams. SST 
forecasts are verified against HadISST (Rayner et al. 2003) and Australian rainfall forecasts are 

 (a) POAMA1.5b     (b) POAMA2      (c) POAMA2 
       (non-flux corrected)      (flux corrected) 

 
LT 0 
 
 
 
 
 
LT 3 
 
 
 
 
 
LT 6 
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verified against the National Climate Centre’s gridded monthly analysis (Jones and Weymouth 
1997). 

Table 1 Overview of model configuration of POAMA1.5b and POAMA2.  

 POAMA1.5b POAMA 2 

Common features • Atmospheric model : BAM3.0 (T47 L17) 

• Ocean model : ACOM2 (zonal resolution 2°, meridional 

resolution 0.5° in the tropics gradually changing to 1.5° 

near the poles, 25 vertical levels) 

• Atmosphere and land initialised with ALI 

 Ocean 

 Data assimilation  

 System 

 

PODAS 

 

 

PEODAS 

 

 Forecast ensemble  

generation 

 

Atmosphere perturbed 

 

Ocean perturbed 

P2.4a P2.4b  Mean state bias  

correction 

 

No No Yes 

 

In this study, we compare predicted anomalies against observed anomalies of SST and rainfall. 
For the predictions, the monthly climatology was computed as a function of forecast start month 
and lead time. By forming anomalies relative to the model’s climatology, some aspects of the 
mean model bias are removed (Stockdale et al. 1998, Weigel et al. 2008). The observed 
anomalies were obtained relative to the observed climatology for the same 1980-2006 period. 

3 RESULTS 

3.1 Indo-Pacific SST indices 

Predictability of regional seasonal climate results mainly from ENSO via its teleconnections 
even though the impact of ENSO is different over different regions on the globe. Australia is 
one of the regions whose climate is highly sensitive to ENSO in its cool seasons (June to 
November) (McBride and Nicholls 1983). 
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Furthermore, Australian climate appears to respond differently to El Niño events whose 
maximum SST warming is found in the eastern Pacific (EP El Niño), to El Niño events whose 
maximum SST warming is found in the central Pacific (CP El Niño) and to Indian Ocean 
Dipole (IOD) events that captures the variation of the Indian Ocean east-west dipole mode, 
whether or not they occur in conjunction with ENSO in the Pacific (Lim et al. 2009, Risbey et 
al. 2009) (Fig. 3a). For instance, Australian area averaged rainfall is sensitive to CP El Niño, 
which is captured by El Niño- Modoki index2 (EMI; Ashok et al. 2007), in autumn and spring, 
to EP El Niño depicted by NINO3 index3 in spring, and to IOD depicted by Dipole Mode 
Index4 (DMI; Saji et al. 1999) in late autumn to winter (Fig. 3b left panel). The influence of 
both types of El Niño is somewhat weaker over south eastern Australia but the influence of IOD 
in spring is stronger over south eastern Australia compared to its impact on all of Australia (Fig. 
3b right panel).  

(a)  

 

(b) 

  

Fig. 3 (a) Regression of monthly SST anomaly on NINO3 index (left), El Niño Modoki Index (EMI; 
middle), and Indian Ocean Dipole Mode Index (DMI; right), (b) Correlation of seasonally averaged 
Australian area-averaged rainfall (left) and south eastern Australian area-averaged rainfall with 
NINO3, EMI and DMI. 

 

 

 

                                                      
2 EMI= SST  (165°E-140°W,10°S-10°N) – 0.5* SST  (70°W-110°W,15°S-5°N) – 0.5* SST  (125°E-145°E,10°S-20°N) 
3 NINO3 index = SST (90°W-150°W, 5°S-5°N) 
4 DMI= SST  (50°E-70°E, 10°S-10°N) – SST  (90°E-110°E,10°S-0°) 
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Having considered the important role of tropical Indo-Pacific SST in seasonal climate 
prediction and especially in Australian climate prediction, it is a necessary first step to evaluate 
a dynamical seasonal forecast system in terms of its ability to predict ENSO. Here, we examine 
skill of the three different versions of POAMA in predicting NINO3, EMI and DMI, taking 
persistence5 as a reference forecast system.  

Prediction skill is assessed by correlation, normalized root-mean-square error (NRMSE)6 and 
normalized standard deviation (NSTDDEV)7 from P1.5b, P2.4a and P2.4b (Figs 4-6). Predicted 
RMSE and STDDEV of an index are normalized by the STDDEV of the corresponding 
observed index. NRMSE <1 indicates that the forecast error is smaller than a climatological 
forecast. NSTDDEV shows if amplitude of an index is realistically predicted. NSTDDEV=1 
indicates prediction of variability that has observed amplitude. A perfect forecast would have 
NRMSE= 0 and NSTDDEV=1, a climatological forecast would have NRMSE=1 and 
NSTDDEV=0, and a completely random forecast but with observed amplitude (e.g. a 
persistence forecast at long lead time) would have NRMSE= 2  and NSTDDEV=1.  

In Figs 4 and 5, P2.4a shows improvements in predicting the NINO3 index at lead times longer 
than two-three months compared to P1.5b based on correlation and NRMSE. The improvement 
in skill is substantial. For instance, the same skill is achieved with two month longer lead times 
with P2.4a than with P1.5b. Interestingly, P2.4b shows only minor improvement over P1.5b, 
suggesting that correction of the mean state in P2.4b had little beneficial impact on the ability to 
predict EP El Niño (NINO3). P2.4b does show a modest improvement in predicting CP El Niño 
(EMI) at one-five month lead times compared to P1.5b and P2.4a, which perhaps reflects some 
beneficial impact of correcting the mean state on predicting this different flavoured El Nino. 
However, both P2.4a and P2.4b significantly underestimates the amplitudes of NINO3 and EMI 
as lead time increases (Figs 6a,b), especially compared to P1.5b. That is, the ENSO (both EP 
and CP ENSO) seems to be unrealistically damped in the POAMA2 model, regardless of 
whether the mean state bias was corrected. The reason for this is unknown, but the weaker 
amplitude of predicted ENSO variability in P2.4a and P2.4b means that teleconnections 
associated with ENSO will be weakened as well, especially at longer lead times. Hence, 
prediction of regional climate that is largely impacted by ENSO will be hampered at longer lead 
times. 

In regard to predicting the IOD, skill drops rapidly as lead time increases in all three versions of 
POAMA. And, POAMA2 forecasts (both P2.4a and P2.4b) appear to be less skilful than 
POAMA1.5b forecasts (Figs 4c and 5c). The amplitude of predicted IOD is slightly more 
realistic in P2.4b, but all versions of POAMA overestimate the amplitude of the IOD (Fig. 6c). 
Here, it is worth noting that prediction skill of the IOD is highly sensitive to the observation 
data which the forecasts are verified against. For instance, Figs 4d, 5d and 6d display the 
correlation, NRMSE and NSTDDEV of predicted IOD verified against Reynolds SST 

                                                      
5 Persistence forecast is to forecast the future climate condition to be the same as the present condition. 
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(Reynolds et al. 2002), respectively. Verifying against Reynolds SST generally results in higher 
skill and more realistic amplitude than when compared to HadISST. Interestingly, the 
correlation skill of persistence forecast of IOD is also very different between Reynolds SST and 
HadISST data sets (Figs 4c,d). This difference implies a significant amount of uncertainty in the 
observation over the Indian Ocean.  

   

Fig. 4 Correlation of predicted (a) NINO3, (b) EMI and (c) DMI from POAMA1.5b (P1.5b), POAMA2 non-
flux corrected version (P2.4a), POAMA2 flux corrected version (P2.4b) and persistence forecast 
verified against respective observed indices using the HadISST data set. Every month in 1980-
2006 was used in forming the indices. (d) The same as (c) except verified against the observed 
DMI from the Reynolds SST data set. 
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Fig. 5 Normalised root-mean-square-error (NRMSE) of predicted (a) NINO3, (b) EMI and (c) DMI from 
P1.5b, P2.4a and P2.4b. RMSEs of the predicted indices were normalised by the standard 
deviations of the respective observed indices from the HadISST data set. Every month in 1980-
2006 was used in forming the indices. (d) The same as (c) except using the observed DMI from 
the Reynolds SST data set. 
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Fig. 6 Normalised standard deviation of predicted (a) NINO3, (b) EMI and (c) DMI from P1.5b, P2.4a 
and P2.4b (Standard deviations of the predicted indices were normalised by the standard 
deviations of the respective observed indices from the HadISST data set). Every month in 1980-
2006 was used in forming the indices. (d) The same as (c) except using the observed DMI from 
the Reynolds SST data set. 
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3.2 Australian rainfall  

Prediction skill for Australian rainfall is assessed by calculating the proportion of correct  
forecasts for exceeding median rainfall (Wilks 2006), based on the 2x2 contingency table shown 
in Fig. 7:  

 

Fig. 7 The 2x2 contingency table of predicting a dichotomous event. The letters a, b, c, and d indicate 
the frequencies of four different types of forecast and observation pairs for a dichotomous event 
(taken from Lim et al. 2009, their figure 10). 

dcba

da
correctproportion

+++
+=  

Probabilistic forecasts for above median rainfall were computed using the 10 ensemble 
members for each version of POAMA. Medians of seasonal rainfall at each model grid point 
were obtained from the hindcasts in a cross-validated fashion at each lead time. The same 
procedure of finding the median and determining rainfall being above or below the median was 
applied to the observed gridded rainfall data set for the period 1980-2006.  

Figure 8 displays proportion correct of predicting rainfall being above the median from P1.5b, 
P2.4a and P2.4b for lead time 0. In general, POAMA2 rainfall forecasts show higher proportion 
correct in late autumn (May-June-July; MJJ) to winter (June-July-August; JJA) and summer 
(December-January-February; DJF) compared to POAMA1.5b but lower proportion correct in 
late summer (February-March-April; FMA) to autumn (March-April-May; MAM). High 
proportion correct in south eastern Australia in winter-spring is consistent with this region being 
strongly influenced by ENSO/IOD, coupled with the good ability of POAMA to predict 
ENSO/IOD. 
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Fig. 8 Proportion correct of forecasts for rainfall being above the median at lead time 0 (LT 0) for the 
hindcast period (1980-2006). (a) P1.5b, (b) P2.4a, (c) P2.4b and (d) multi-model ensemble 
system consisting of the three versions of POAMA. 
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Fig. 9 The same as Fig. 8 except at lead time 3 (LT 3) months. 
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As it appears that all three versions demonstrate large areas of moderate to good proportion 
correct (>= 60%), and each version has its own strengths and weaknesses over different 
locations in different seasons, we combined all these three versions together to form a multi-
model ensemble. The overall performance of a multi-model ensemble system is suggested to be 
better than the individual component models as a result of offsetting errors and increased 
ensemble spread (Doblas-Reyes et al. 2000, Palmer et al. 2004, Hagedorn et al. 2005, Weigel et 
al. 2008). Here, the POAMA multi-model ensemble system (POAMA MME) was formed 
simply by pooling all ensemble members of the three versions together (30 members in total). 
At lead time 0 POAMA MME forecasts appear to be more skilful than POAMA2 in all seasons 
except for DJF and more skilful than POAMA1.5b in all seasons except for FMA, April-May-
June (AMJ) and July-August-September (JAS) (Fig. 8d).  

By three month lead time (Fig. 9) all three versions of POAMA provide forecasts whose overall 
skill is no better than that of a climatological forecast. There is some indication that P2.4a is 
slightly more skilful than the other two versions (Figs 9a-c). Because the individual component 
versions do not have much skill in predicting rainfall at three month lead time, the effect of 
combining three component models is not obvious (Fig. 9d). 

In order to make comparisons between the different forecast systems easier in all seasons at 
different lead times, we summarize the skill assessment based on proportion correct by 
computing the fraction of the grid points where proportion correct is equal to or greater than 
60% (which is the threshold of a skilful forecast used in this study) multiplied by the mean 
proportion correct of those grid points. A perfect forecast at all grid points would yield a score 
of 1 by this measure (100% of the grid points multiplied by 100% proportion correct over those 
grid points). This weighted mean skill score is displayed in Fig. 10. Consistent with Fig. 8, at 
lead time 0 the weighted mean skill score for the two versions of POAMA2 is higher than 
POAMA1.5b in late autumn through to winter and in summer and is slightly higher in spring as 
well (Fig 10a). The weighted mean skill score of the POAMA MME is higher than that of any 
single POAMA version for most of the year at the shortest lead time. Improvement by this 
multi-model ensemble approach is achieved at the short lead times (0-1 month) for which the 
individual POAMA versions have reasonably good skill (Figs 10a,b). However, as lead time 
increases, the POAMA MME does not outperform the best single model, which appears to be 
P2.4a (Figs 10c-e).  

In addition to proportion correct, reliability and resolution are important forecast qualities in 
probabilistic forecasts. The attributes diagram (Wilks 2006) is widely used as a compact way to 
display reliability and resolution as well as some other forecast features. Figure 11 displays the 
attributes diagrams of rainfall forecasts for above median using all grid points over Australia at 
lead time 0 based on the entire 27 year record of hindcasts. In Fig. 11, the diagonal line 
indicates perfect reliability (e.g. the accuracy of forecast of 70% chance of being above median 
rainfall should be 70%). Forecasts falling in the grey areas of Fig. 11 are considered to be 
reliable forecasts as they correctly indicate the occurrence/non-occurrence of the exceedance of 
median rainfall and have smaller magnitudes of error than a climatological forecast. The size of 
dots in Fig. 11 represents the frequency of forecasts in each probability category.  

The overall distribution of the probabilistic forecasts from all three versions of POAMA 
suggests that the forecasts tend to be overconfident: The POAMA forecasts of above median 
rainfall occur more often than observed. Likewise, the POAMA forecasts of being below 
median occur more often then observed (i.e. POAMA is overly confident in its prediction that 
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rainfall will not be above the median). In contrast to the poor forecast reliability, forecast 
resolution is good as indicated by different probability forecasts being followed by different 
observed outcomes (i.e. higher probability forecasts of an event (here, above median rainfall) 
are followed by higher frequency of the observed event).  
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Fig. 10 Skill score using proportion correct that is computed by the multiplication of the fraction of the 
number of grid points over Australia whose proportion correct is equal to or greater than 60% by 
the average proportion correct over those grid points.  
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Fig. 11 Attributes diagram of POAMA prediction of above median rainfall at LT 0, using 27 years of 
hindcasts over all grid points of Australia. (a) P1.5b, (b) P2.4a, (c) P2.4b and (d) multi-model 
ensemble system consisting of the three versions of POAMA. The Y-Axis of each diagram 
indicates relative observed frequency, and the X-Axis indicates Forecast probability 
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Fig. 11 be continued. 
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Figure 11d suggests that at the shortest lead time, the MME approach improves forecast 
reliability especially in late autumn to winter (MJJ, JJA) and spring (September-October-
November, October-November-December) and improves forecast sharpness in summer (DJF, 
January-February-March).  

In order to quantify reliability and resolution displayed in Fig.11, we computed mean reliability 
error (REL) and resolution (RES) following Wilks (2006): 


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where n is the total number of the forecasts, i indicates forecast categories (10% interval) and i 
runs from 1 to I (I=10 with 10% interval in this study), Fi is the forecast probability of rainfall 

being above the median that falls into the ith bin, iO  is the relative frequency of the observed 

rainfall being above the median given each forecast Fi, and O  is the climatology of above 
median rainfall in the observation. The smaller REL and the larger RES is, the more skillful 
forecasts are.  

REL and RES of the three versions of POAMA and POAMA MME at lead time 0 are displayed 
in Figs 12a and 12b, respectively. Consistent with the above discussion, the POAMA MME 
significantly reduces reliability error while it improves forecast resolution. This is an 
encouraging result as it is difficult to increase forecast resolution without adding independent 
information to the prediction system (Stephenson et al. 2005, Doblas-Reyes et al. 2006). A more 
modest improvement in reliability made by POAMA MME over the individual versions of 
POAMA is found at lead time of three months (Fig 12c), but this improvement is achieved by 
having more forecasts between 40-60% forecast categories (not shown). Forecast resolution is 
significantly reduced by lead time 3 months in all four POAMA forecast systems (Fig 12d).  
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Fig. 12 Mean reliability error (left) and mean resolution (right) of the forecasts from the three versions of 
POAMA and the multi-model ensemble system in predicting above median rainfall at (a) LT 0 and 
(b) LT 3.  

4 SUMMARY AND CONCLUDING REMARKS 

We have examined the skill of hindcasts produced from the improved POAMA2 system. We 
have focused on predictions of tropical Indo-Pacific SST and Australian rainfall and made 
comparisons with the current operational version of POAMA (P1.5b). A major upgrade made 
for the POAMA2 system is to implement a new state-of-the art ensemble-based ocean data 
assimilation scheme, PEODAS (Yin et al. 2010). PEODAS assimilates in situ temperature and 
salinity, taking state-dependent background field errors into account. PEODAS provides more 
accurate and realistic ocean initial conditions than the previous univariate scheme employed in 
the POAMA1 system. The ensemble of these ocean states provided by PEODAS is used to 
initialize the atmosphere-ocean coupled model, and therefore, to generate forecast ensemble.  

In addition to documenting the impact of improved ocean initial conditions provided by 
PEODAS for forecast skill, we also explored the impact on forecast skill of removing the mean 
state bias by applying an explicit flux correction scheme to POAMA2 (P2.4b). The scheme 
successively reduces the tropical-wide cold SST bias and more regional warm bias off the west 
coast of South America that develops with increasing lead time in P2.4a. Two sets of hindcasts 
from the different versions of POAMA2 – non-flux corrected P2.4a and flux corrected P2.4b – 
were analysed together with the hindcasts from P1.5b. Hindcasts for the period 1980-2006 were 



 

 21

generated from each of these three versions of POAMA and were verified against HadISST and 
the National Climate Centre monthly rainfall analysis.  

Our results suggest that there are strengths and weaknesses in POAMA2 in predicting tropical 
SST: P2.4a has improved skill in predicting the occurrence of El Niño in the eastern Pacific as 
captured by the NINO3 index. P2.4b (flux corrected) has improved skill in predicting El Niño 
Modoki (central Pacific El Niño) as depicted by EMI, compared to the non-flux corrected 
versions of POAMA - P1.5b and P2.4a. However, the amplitudes of NINO3 and EMI are 
significantly underestimated in the two versions of POAMA2. And, the overall skill in 
predicting the behavior of the IOD is less skilful with POAMA2 than with POAMA1.5b.  

Australian rainfall is predicted with near equal skill with all three versions of the model at short 
lead times (0-1 month), but P2.4a slightly outperforms the other two at longer lead times. A 
multi-model ensemble system consisting of the three different versions of POAMA 
demonstrates higher proportion correct than any single version of POAMA, as well as improved 
reliability and resolution at short lead times of 0-1 month. However, at lead times longer than 3 
months the POAMA multi-model ensemble is no better than the individual members. This is 
because at longer lead times each of the versions that goes into the multi model ensemble does 
not have skill and a multi-model ensemble cannot create skill although it can improve existing 
skill.  

All versions of POAMA demonstrate high skill to predict tropical Pacific SST with up to 8 
month lead times, and P2.4a shows a marked improvement over P1.5b. Therefore, there still 
remains a possibility to increase rainfall forecast skill at longer lead times by some statistical 
post-processing if hindcasts can be generated for a sufficiently long period. For instance, during 
the period 1980-2006, we sample only a handful of El Niño and La Niña events, which are the 
primary drivers of climate variability in Australia. Extending the hindcast set back to the 
beginning of the atmospheric reanalyses (~1958) would seem to be warranted and is being 
considered for future work with POAMA. 
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 APPENDIX A – PROCEDURE OF FLUX CORRECTION 

Step 1. The Bureau of Meteorology’s Atmospheric Model v3.0 (BAM) is run with observed 
SST from Reynolds SST data set for the period 1984-2003, and the monthly 
climatologies of wind stress (τBAM) and shortwave radiation (QsBAM) from the model are 

computed (
BAM

τ and 
BAM

sQ ). 

Step 2. The ocean and atmosphere coupled model (ACOM2 + BAM) is freely run for 20 years 
(being started with observed SST in January, 1984)  

a. Wind stress and shortwave radiation in the atmosphere model in the coupled run, τC 
and QsC, are corrected at each time step before being passed to the ocean model as 
below:  

   )(
OBSBAMCmC

ττττ ′−′−=  

                  )sQsQ(QsQs
OBSBAMCmC
′−′−=  

where 
OBS

τ and 
OBS

sQ are observed monthly climatologies of wind stress and 

shortwave radiation that are obtained from the CORE data set (Large & Yeager 2009). ´ 
indicates daily value interpolated from monthly climatology. 

b. Total heat flux, QTotC, is modified as  

                 )TT(QQQQ
OBSCTotCTotCmTotC
′−−=Δ+= λ  

   where λ= 40 W/m2/°C, TC is the coupled model SST at each time step and 
OBS

T ′  is 

observed SST interpolated daily from monthly climatology. 

c. Compute the monthly climatology of QΔ , QΔ . 

Step 3. Run the coupled model in forecast mode (i.e. initialize it on the 1st of each month and 
run for 9 months) for the hindcast period, having its wind stress, shortwave radiation 
and total heat flux, 

F
τ  , 

F
Qs  and 

TotF
Q corrected at each time step by daily values of 

monthly climatologies of 
BAM

τ ,
OBS

τ  , 
BAM

sQ , 
obs

sQ , and QΔ  as follows: 

    

)(
OBSBAMFmF

ττττ ′−′−=  

)sQsQ(QsQs
OBSBAMFmF
′−′−=  

QQQ
TotFmTotF

′Δ+=  
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