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Introduction 
The Predictive Ocean Atmosphere Model for 
Australia (POAMA) is the dynamical seasonal 
forecast system at the Australian Bureau of 
Meteorology. POAMA consists of a global 
coupled ocean-atmosphere model, data 
assimilation schemes for ocean, land and 
atmosphere, and an ensemble forecast system 
(Alves et al. 2003). Like many current systems, 
data is assimilated separately into the ocean and 
atmosphere components of the coupled model, to 
provide initial conditions for the coupled model 
forecast. There is concern in the intra-
seasonal/seasonal prediction community 
regarding the impact of the imbalance in ocean 
and atmosphere initial states generated by 
separate assimilation schemes (Balmaseda and 
Anderson, 2009). Initialisation shock caused by 
this imbalance can manifest as spurious features 
or impede ocean-atmosphere feedbacks, such as 
those associated with El Niño-Southern 
Oscillation (ENSO) and Madden-Julian 
Oscillation (MJO), and thus ultimately degrade 
the forecast.  
 
We aim to develop a coupled data assimilation 
system for POAMA, to provide dynamically 
balanced ocean-atmosphere initial states for the 
coupled model forecasts. The new scheme would 
include an extension of the highly successful 
ocean data assimilation scheme POAMA 
currently employs. A keystone of this 
assimilation scheme is the set of background 
covariances developed from a non-stationary 
ensemble of ocean states. The new approach 
would use coupled ocean-atmosphere 
background covariances derived from an 
ensemble of the coupled states. The first step was 

to examine the coupled covariances obtained 
from an ensemble set produced by the POAMA 
coupled model. Here we investigate whether the 
coupled covariance structures contain realistic 
information that could be used to enhance the 
initialisation of important coupled processes. 
 
POAMA Initialisation Schemes 
The POAMA coupled model forecasts are 
currently initialised using an ensemble of ocean, 
land and atmosphere states generated by separate 
ocean and atmosphere-land data assimilation 
schemes. The Atmosphere Land Initialisation 
scheme (ALI; Hudson et al., 2011) involves 
running an offline version of the atmospheric 
model component of POAMA, forced with 
observed sea-surface temperature (SST, Reynolds 
et al., 2002), and nudged towards reanalyses from 
ERA-40 for the period 1960 to Aug 2002 
(Uppala et al., 2005) and BoM’s operational 
global NWP system thereafter. Using this 
method, ALI introduces realistic atmosphere and 
land initial conditions into the POAMA forecasts 
and captures the observed intra-seasonal 
atmospheric state. 
 
The POAMA Ensemble Ocean Data Assimilation 
Scheme (PEODAS; Yin et al., 2011) involves 
running an offline version of the oceanic model 
component of POAMA forced with surface 
fluxes from atmospheric reanalyses and strong 
surface relaxation to observed SST, and 
assimilating sub-surface temperature and salinity 
data using an approximate form of the ensemble 
Kalman filter system (EnKF). PEODAS is based 
on the multi-variate ensemble optimum 
interpolation system of Oke et al (2005, 2008), 
but uses covariances from a time evolving model 
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ensemble. PEODAS consists of a central run and 
11 perturbed ensemble members, generated by 
small perturbations to the surface forcing. 
Background error covariances are estimated from 
an augmented ensemble set (present 11 ensemble 
perturbations plus perturbations from 9 previous 
assimilation cycles, spanning 1 month) and used 
to assimilate observations into the central run. 
Using this approach has significant 
computational savings over a traditional EnKF 
and other complex schemes. By using state-
dependent, multi-variate background error 
covariances from the ocean ensemble, PEODAS 
has been able to successfully utilise salinity 
observations as well as ocean temperature (Wedd 
et al., In Prep.) and create good initial conditions 
for the ocean component of the coupled forecast 
system (Zhao et al., In Prep.). 
 
Note that PEODAS actually provides an 
ensemble of ocean initial conditions that can be 
used to initialise the ensemble members of the 
POAMA coupled model forecasts. Prior to the 
development of PEODAS, POAMA ensemble 
members were perturbed using lagged ALI 
atmospheric states as initial conditions. Ideally, 
atmospheric and oceanic data would be 
assimilated together into a coupled ensemble, to 
generate dynamically balanced ocean-atmosphere 
initial states, ready to use for coupled model 
forecasts. Therefore we are considering 
implementing a coupled data assimilation system 
for POAMA, comprised of a coupled model 
ensemble and an extension of the PEODAS 
scheme to include atmospheric variables. The 
coupled scheme would use ocean-atmosphere 
coupled covariances for data assimilation, thus 
our first step has been to investigate ocean-
atmosphere covariances derived from a POAMA 
coupled model ensemble. 
 
Coupled Model Ensemble 
Shi et al. (2009) used the POAMA coupled 
model to produce a large ensemble of forecasts to 
study the 1997 El Niño event. The coupled model 
used in that study was comprised of the BoM 
unified atmospheric model version 3.0 (BAM 
3.0d; Colman et al., 2005) and the Australian 
Community Ocean Model version 2 (ACOM2; 
Schiller et al., 2002). BAM 3.0d has a horizontal 
spectral resolution of T47 and 17 vertical levels. 
ACOM2 has a zonal grid spacing of 2°, 
meridional grid spacing of 0.5° within 8° of the 

equator and increasing to 1.5° near the poles, and 
25 vertical levels (12 in top 185m). The 
atmosphere and ocean models are coupled using 
the Ocean Atmosphere Sea Ice Soil (OASIS) 
coupling software (Valcke et al., 2000), and no 
flux correction is applied to the exchanged 
fluxes. See Alves et al. (2003), Hendon et al. 
(2009), Zhao and Hendon (2009), Rashid et al. 
(2011) and others for more information about 
POAMA model details, applications and skill. 

Shi et al. (2009) added small random SST 
perturbations (0.001°C) to the ocean initial state 
to create a 90-member ensemble with the coupled 
model, which was run for 9 months from 1 Dec 
1996. The ensemble of forecasts all developed an 
MJO during the first 4 months and warm El 
Niño-like conditions. We examined the forecast 
results at different lead times to determine 
whether the coupled covariance fields from the 
ensemble captured the ocean-atmosphere 
interactions associated with MJO and/or ENSO 
activity and could be used to guide coupled data 
assimilation. 
 
Coupled Covariances 
Coupled covariances were calculated at specific 
times into the ensemble coupled model forecasts 
(e.g. 2 months lead). The forecast results at a 
given lead time had the ensemble mean removed, 
and then the ensemble perturbations of a 
reference variable (e.g. SST) at one location (e.g. 
ocean surface at intersection of dateline and 
equator) were compared to ensemble 
perturbations in that variable, and other ocean 
and atmosphere variables, all across the model 
domain. The covariances were normalised, 
following Alves and Robert (2005), then scaled 
as shown here: 
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where ‘covnorm’ and ‘covincr’ are the normalised 
and scaled covariances, respectively, for 
reference variable ‘T’ at location ‘x0’ compared 
with variable ‘U’ at all locations ‘x’, ‘var’ is 
variance, and the overbar represents the average 
over the ensemble. The normalisation provides 
the covariance in units of U per unit of T. Scaled 
covariance shows the change in U based on the 
standard deviation of the reference variable in the 
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ensemble; a rough guide to how the information 
from the ensemble covariances would be used 

during data assimilation and to allow the 
covariances to be assessed in units of relevance. 

 
Figure 1 Scaled covariances based on ocean temperature at 100-m depth at (0°, 180°) for ocean 
temperature (A; shading; °C), ocean zonal current (A; contours; cm s-1), SST (B and C; shading; 
°C), surface wind (B; vectors; m s-1), and OLR (C; contours; W m-2), at 2 months into the 
coupled model forecasts. 

 

We calculated the coupled covariances in the 
ensemble after 2 months lead. Around this time 
the active phase of a strong MJO was centred in 
the western equatorial Pacific Ocean. Figure 1A 

shows an ocean vertical section along the equator 
in this region, and the shading indicates the 
covariance of ocean temperature at (0°, 180°) and 
100 m depth with temperature elsewhere in the 
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section. The pattern indicates a positive change in 
temperature at 100 m is linked to a greater 
positive adjustment in temperature below; the 
adjacent negative covariance at the thermocline 
suggests the local behaviour is associated with 
downwelling and sharpening of the thermocline, 
with cooling associated with upwelling further 
west. Covariance of ocean zonal current with the 
reference temperature (the contour overlay in 
Figure 1A) shows that the eastward surface 
current and underlying counter-current is also 
congruent with a tilting thermocline. 
 
Figure 1B shows the surface above the vertical 
section in Figure 1A. In Figure 1B, the shading 
shows the covariance of SST with the sub-surface 
reference temperature. A positive change in 
reference temperature is linked to a local increase 
of SST. The black vectors in the plot show the 
change in surface winds associated with positive 
increase in reference temperature. A more 
westerly airflow into the region of elevated SST 
corresponds to an increase in reference 

temperature. 

In Figure 1C, the shading is again the covariance 
of SST with the reference temperature. Overlaid 
are contours of covariance of out-going long-
wave radiation (OLR) with the reference 
temperature; this is a proxy for changes in 
convection associated with positive change in 
reference temperature. The covariance field 
indicates a region of increased convection 
(decreased OLR) where SST is increased around 
the reference location. 
 
These patterns, including the pair of atmospheric 
cyclonic cells off the equator and to the west of 
the reference location, which feed the westerlies 
into the region of enhanced convection, are 
typical of the influence of the MJO. This result is 
encouraging as it shows how the air-sea 
interactions important to representing the MJO 
may be captured by coupled covariances and 
utilised in coupled data assimilation to improve 
coupled forecasts. 

 
Figure 2 Scaled covariances based on SST at (0°, 90°E) for SST (A; shading; °C), surface winds 
(A; vectors; m s-1), ocean temperature (B; shading; °C), and ocean zonal current (B; contours; cm 
s-1) at 1 month into the coupled model forecasts. 
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Figure 3 Scaled covariances based on SST at (40°S, 160°E) for SST (shading; °C) and surface 
winds (vectors; m s-1) at 2 months into the coupled model forecasts. 

 

Figure 2 shows covariances with SST in the 
eastern equatorial Indian Ocean after 1 month of 
the ensemble forecast. The covariance of SST 
(Figure 2A, shading), surface winds (Figure 2A, 
vectors), ocean temperature (Figure 2B, shading) 
and ocean zonal current (Figure 2B, contours) 
near the reference point appears to be consistent 
with enhanced upwelling near the maritime 
continent. Covariances further afield (for 
example, the north-east corner of the region 
shown) may not contain realistic information. 
 
We have also examined coupled covariances in 
the mid-latitudes. Figure 3 shows covariances for 
SST off the east coast of Australia two months 
into the ensemble forecast (shading is SST, 
vectors are surface winds). These covariance 
fields likely contain information related to 
synoptic systems. For example, the influence of 
high pressure systems on sea surface currents 
may explain the connection between the sea 
surface warming and anticyclonic airflow 
observed in Figure 3. 
 
Further Considerations 
In the examples shown above, it is unclear at 
what distance from the reference location the 
information contained in the coupled covariances 
becomes unrealistic and disconnected from the 
physical processes we have associated with the 
covariance structures. The ensemble may not be 
large enough for noise to cancel in the 
covariances or the covariances may truly be 
reflecting teleconnections related to the processes 
occurring near the reference location. PEODAS 
applies a latitude-dependent localisation to 

covariances during data assimilation. The 
localisation scheme will need further 
development for coupled covariances as it will 
need to reflect differences between atmosphere 
and ocean horizontal and vertical scales. 

In the current study, perturbations in the coupled 
model ensemble were allowed to grow 
unconstrained by data assimilation cycles. The 
large spread in the ensemble, especially after 2 
months, produced coupled covariance structures 
associated with dominant modes of intra-seasonal 
and inter-annual variability. In a coupled data 
assimilation system with daily assimilation 
cycles that constrain the spread of the ensemble 
(and with less ensemble members due to 
computational practicalities), the coupled 
covariance structures may be different than 
shown here. 
 
The Coupled Ensemble Initialisation (CEI) 
system has recently been developed as another 
step towards a fully coupled data assimilation 
system (Yin et al., In Prep.). The first version of 
the CEI system involves running the POAMA 
coupled model as an ensemble (as done in 
PEODAS) and daily nudging the ocean and 
atmosphere towards reanalyses (as done in ALI). 
The next step is to include PEODAS in the CEI 
system, assimilating ocean observations directly 
into the coupled ensemble. Finally, the PEODAS 
scheme will be extended to include atmospheric 
parameters. The analysis produced by the current 
version of the CEI system will allow us to further 
investigate coupled covariances in a constrained 
coupled model ensemble. 
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Conclusions 
Coupled covariances for a range of variables, 
such as surface winds, SST, out-going long-wave 
radiation and ocean currents, have been analysed 
using a large coupled model ensemble. One 
major finding was the coupled covariance 
structures for the atmospheric and oceanic 
equatorial Pacific, based on unfiltered SST and 
zonal surface wind errors, contained large-scale 
surface wind circulation patterns, shifts in the 
ocean thermocline, and regional enhancement or 
suppression of deep convection and precipitation, 
which were associated with the MJO and ENSO. 
The results showed the coupled covariance 
structures contained realistic information that 
could enhance the initialisation of these 
important coupled processes. The results indicate 
a coupled data assimilation approach using such 
covariances has potential to improve intra-
seasonal/seasonal forecasts. 
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Introduction 
The use of the Bureau of Meteorology’s 
dynamical Predictive Ocean Atmosphere Model 
for Australia (POAMA; Alves et al. 2003) as an 
intra-seasonal prediction tool for Australia is 
currently being investigated. POAMA was 
originally designed for forecasting seasonal mean 
conditions (e.g. mean conditions for the 
upcoming three months). However users of 
climate forecasts, such as in agriculture and water 
management, are increasingly seeking forecast 
guidance on time scales and lead times shorter 
than seasonal. The new version of the model, 
POAMA-2, has been developed to better suit 
forecasting at these multi-week timescales, 
thereby filling the gap in current prediction 
capability between weather forecasts and 
seasonal outlooks for Australia. This work is part 
of the process towards development of dynamical 
modeling as the basis for Australia's weather and 
climate forecasts. 
 
One of the main targets of this research is to 
improve our understanding of climate drivers that 
control intra-seasonal climate variability and 
forecast skill in POAMA-2. This paper 
summarises our progress on evaluating the role of 
two key drivers: the Madden-Julian Oscillation 
(MJO) and the Southern Annular Mode (SAM). 
Specifically, we assess the model’s ability to (i) 
predict the large-scale components of each driver, 
(ii) simulate the associated rainfall with each 
driver, and (iii) predict rainfall regionally where 
each driver has a large impact. 
 
Model description 
POAMA-2 uses the Bureau of Meteorology 

unified atmospheric model version 3 (Colman et 
al. 2005) and the Australian Community Ocean 
Model version 2 (Schiller et al. 1997). Initial 
conditions are provided by separate data 
assimilation schemes for the ocean, land and 
atmosphere components of the global coupled 
model; for POAMA-2 these include an ensemble 
ocean data assimilation system (PEODAS; Yin et 
al. 2011) and an atmosphere/land initialisation 
system (ALI; Hudson et al. 2011). PEODAS is an 
approximate form of the ensemble Kalman filter 
system and generates an ensemble of ocean states 
each day including a central unperturbed ocean 
analysis. ALI creates a set of realistic 
atmospheric initial states by nudging zonal and 
meridional winds, temperatures and humidity 
from the atmosphere model of POAMA (run 
prior to hindcasts being made and forced with 
observed SST) toward an observationally based 
analysis. ALI also generates land surface initial 
conditions that are in balance with the 
atmospheric condition; see Hudson et al. (2011) 
for full details of the ALI system. 
 
Perturbed initial conditions, which are required to 
sample forecast uncertainty due to sensitivity to 
initial condition errors, are provided using a 
coupled breeding technique. The coupled 
breeding produces consistent perturbations to 
both the ocean and atmosphere at the initial time 
of the forecasts. The perturbations are generated 
using the coupled ocean-atmosphere model and 
then rescaled to represent analysis uncertainty 
and centred every day, and added to the 
unperturbed analyses. This new strategy 
represents a significant milestone in our 
development of the POAMA forecast system for 
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intra-seasonal prediction.  
 
Data description 
The POAMA-2 hindcast framework consists of a 
33-member ensemble of 4 months duration 
initialized on the 1st, 11th and 21st of each month 
between 1989 and 2010. Here we use the period 
1989-2006 that is common to POAMA-1.5. In 
contrast to POAMA-1.5, POAMA-2 also uses a 
multi-model approach whereby three model 
versions each producing 11 ensemble members 
are used to create the 33-member ensemble. We 
analyse the first 8 weeks of precipitation, zonal 
wind, meridional wind, and diurnal maximum 
temperature data for hindcasts initialized on the 
1st of the month. Hindcast anomalies are formed 
relative to the hindcast model climatology, which 
is a function of both start month and lead time, 
and thus a first-order linear correction for model 
mean bias is made. We define a lead time of one 
week as the mean of the first week of each 
hindcast. 
 
Model generated Australian rainfall and 
temperature data are verified against Australian 
National Climate Centre (NCC) 0.25º gridded 
daily data (Mills et al. 1997) interpolated onto the 
POAMA spatial grid. Global rainfall simulations 
and predictions are verified against the Climate 
Prediction Centre Merged Analysis of 
Precipitation pentad dataset (CMAP; Xie and 
Arkin 1997). Model generated global wind data 
are verified against ERA-40 data (Uppala et al. 
2005) for the years 1980–2001. We create 
anomalies, relative to climatology, from the 
observational/re-analysis datasets for direct 
comparison with POAMA-2 anomalies. 
 
Madden-Julian Oscillation 
As the dominant mode of tropical intra-seasonal 
variability, the MJO (e.g. Madden and Julian 
1994) exerts an important influence on weather 
and climate in many parts of the globe including 
Australia (Wheeler et al. 2009). The MJO 
consists of large-scale coupled patterns in 
atmospheric circulation and deep convection that 
propagate eastward over the equatorial Indian 
and western Pacific oceans with a period of 30-
90 days. The state of the MJO is depicted using 
the bivariate Real-time Multivariate MJO (RMM) 
index, which captures the large-scale structure of 
the MJO in zonal wind and convection along the 
equator; see Wheeler and Hendon (2004) for full 

details. The RMM index is obtained from a 
combined EOF analysis of equatorially-averaged 
(15°N-15°S) outgoing longwave radiation 
(OLR), 850hPa zonal wind, and 200hPa zonal 
wind anomalies using NCEP/NCAR reanalysis 
data. 

 

 
Figure 1 illustrates the skill in predicting the 
daily RMM index for POAMA-2 (solid) and 
POAMA-1.5 (dashed). We score the daily 
ensemble mean RMM index for each model 
using root-mean-square error (RMSE), which is 
calculated as a function of forecast start month 
over the hindcast period 1989-2006 for lead times 
out to 30 days. For a climatological forecast of 
the bivariate RMM anomaly index the 
RMSE=√2, and thus forecasts are typically 
deemed to be skilful for RMSE< √2. However, 
Figure 1 shows the approach to √2 at long lead 
time is slow, so we can more confidently say that 
POAMA-2 provides about a 1-week 
improvement in skill compared to POAMA-1.5 
for lead times beyond about 2 weeks. 
 
With our focus on the global-scale impact of the 
MJO, we assess the ability of POAMA-2 to 
reproduce the broad-scale spatial structure of 
MJO rainfall on intra-seasonal timescales. Figure 
2 shows composite maps of weekly-mean rainfall 
based on the 8 phases of the MJO lifecycle 
defined by Wheeler and Hendon (2004), for 
observations and POAMA-2. Model composites 

Figure 1 Root-mean-square error of the predicted 
RMM index for the ensemble mean POAMA-2 
(solid) and POAMA-1.5 (dashed) forecast as a 
function of lead time (days) for all hindcasts 
initialized 1989-2006. 
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are formed using lead times 3-6 weeks so as to be 
independent of initial conditions and model spin-
up, and we combine adjacent MJO phase pairs 
corresponding to the convectively active phase of 
the MJO over the Indian Ocean (2/3), Maritime 
Continent (4/5), western Pacific (6/7), and 
Western Hemisphere (8/1). We present 
composite MJO-rainfall anomalies in Figure 2 for 
November-April when the MJO is strongest and 
shifted into the Southern Hemisphere.  

 

 
POAMA-2 reproduces the observed broad-scale 
characteristics of each MJO phase with 
reasonable fidelity over the Indian and western 
Pacific Ocean (Indo-Pacific) region, including 
over northern Australia. The model also captures 
some features of the MJO’s impact on tropical 
rainfall away from the Indo-Pacific region, with 
anomalous drying (wet conditions) over parts of 
Brazil and equatorial Africa in phases 4/5 (8/1). 
A notable deficiency, however, is the 
underestimation of the magnitude of the rainfall 
anomaly over the eastern Indian Ocean by up to 
50%, which is particularly evident in phases 2/3 
and 6/7 when the rainfall anomaly peaks over this 
region. The POAMA-2 representation of MJO 
rainfall shown here is similar to that of POAMA-
1.5 (Marshall et al. 2010a), which is not 
surprising given that the atmospheric models in 

POAMA-2 and POAMA-1.5 are similar. 
 
Based on the knowledge that (i) POAMA-2 can 
predict the large-scale structure of the MJO out to 
4 weeks (Figure 1) and (ii) the local signal of the 
MJO in rainfall across the Indo-Pacific is 
generally well simulated (Figure 2), we turn our 
attention to the ability of the model to predict 
rainfall at intra-seasonal timescales in association 
with the MJO. Probabilistic verification for the 
second fortnight (comprising the average of 
forecast weeks 3 and 4) for November-April start 
times is shown in Figure 3 using the Relative 
Operating Characteristic (ROC) for rainfall in the 
upper tercile for forecasts with and without an 
MJO event in the initial conditions. There are 73 
cases where the MJO is strong at the initial time 
(RMM index ≥ 1 standard deviation, in any 
phase) and 35 cases where it is weak (RMM 
index < 1). The ROC score measures the ability 
of the forecasting system to discriminate between 
events and non-events, thereby providing 
information on forecast resolution. In Figure 3 
we use pink shading for ROC scores greater than 
0.6, with scores greater than 0.5 indicating 
forecast skill better than climatology. 
 
The high ROC scores across the equatorial 
Pacific for both strong and weak MJO cases 
(Figure 3) owe their existence to the high 
predictability of rainfall associated with the El 
Niño-Southern Oscillation (ENSO), which is 
largely independent of the presence or absence of 
the MJO in the initial condition. Elsewhere, 
POAMA-2 shows a larger and more cohesive 
spatial coverage of ROC scores greater than 0.6 
over parts of the Indo-Pacific (extending into the 
North Pacific), North Atlantic Ocean, and eastern 
Australia when the MJO is strong at the initial 
time, compared with when the MJO is weak at 
the initial time. The MJO is known to have a 
strong direct impact over the Indo-Pacific, and 
thus we expect the MJO to be important for intra-
seasonal prediction over this region. Atmospheric 
teleconnections of the MJO are known to 
modulate local climate over eastern Australia 
(Wheeler et al. 2009) and the North Atlantic 
Ocean (e.g. Cassou 2008), and thus the MJO also 
appears to be a source of intra-seasonal rainfall 
predictability over these extra-tropical regions; 
this is a key result in the development of 
POAMA-2 for intra-seasonal prediction. We 
further note that the ROC skill for predicting 

Figure 2 Rainfall anomaly composite maps for 
MJO phases 2/3, 4/5, 6/7, and 8/1 over the period 
November-April for POAMA-2 hindcasts at lead 
times of 3-6 weeks (left column) and for 
observations (right column). 
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MJO-rainfall over these tropical and extra-
tropical regions is considerably higher and more 
spatially cohesive for POAMA-2 than for 
POAMA-1.5 (not shown) in the second fortnight, 
consistent with the vast improvement in 
predicting the MJO index in POAMA-2 (out to 4 
weeks) compared with POAMA-1.5 (3 weeks; 
Figure 1). 

 
Southern Annular Mode 
The SAM (e.g. Trenberth 1979) plays a dominant 
role in the high- and mid-latitude climate of the 
Southern Hemisphere. Characterised by 
meridional shifts in the strength of the zonal flow 
between about 55º-60ºS and 35º-40ºS, the high 
polarity index of the SAM is described by 
decreased geopotential height over the polar cap, 
increased geopotential height over the mid-
latitudes, and a poleward shift of the mid-latitude 
westerly wind belt over the Southern Ocean. 
SAM variations are consistent with a normally 
distributed red-noise process with an e-folding 
timescale of around 10 days, with variability in 
the SAM found over a wide range of timescales. 

 
The SAM is represented by an index that 
captures the variability of MSLP around the mid-
latitudes of the Southern Hemisphere (e.g. Gong 
and Wang 1999). The observed and model SAM 
indices are obtained from an EOF analysis of 
zonal-mean MSLP between 25°S and 75°S, using 
NCEP/NCAR Re-analysis data and POAMA 
hindcast data respectively; see Marshall et al. 
(2011b) for full details. Figure 4 illustrates the 
skill in predicting the ensemble mean daily SAM 
index for POAMA-2 (solid) and POAMA-1.5 
(dashed). For a climatological forecast of the 
SAM index the RMSE=1; POAMA-2 reaches 
this threshold after 16 days, compared with 15 
days for POAMA-1.5. Thus, the new model is a 
slight improvement on its predecessor in its 
ability to predict the SAM. The inherent strong 
persistence of the SAM appears to be a key factor 
for its extended-range predictability in a 
dynamical forecast model (Marshall et al. 
2011b). 

We assess the ability of POAMA-2 to reproduce 
observed relationships between the SAM and 
intra-seasonal regional rainfall anomalies in the 
Australian region. We define the high index 
polarity (positive phase) and low index polarity 
(negative phase) of the SAM as occurring when 
index values exceed one standard deviation (σ) 
about the mean (i.e. > 1σ and < -1σ respectively). 
To first order, the high and low index polarities 
have opposite signed but otherwise identical 
climate impacts, and thus we calculate the high-
minus-low index composite difference to 
describe anomalous conditions during the 
positive phase of the SAM.  

Figure 4 As for Figure 1 except for the SAM index. 
 

Figure 3 ROC scores of the probability that 
precipitation averaged over days 15-28 is in the 
upper tercile for Nov-Apr forecast start months for 
cases with an MJO in the initial conditions (top) 
and with no MJO in the initial conditions (bottom). 
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Figure 5 shows composite maps of weekly-mean 
rainfall in association with the positive phase of 
the SAM from the observed and model data for 
lead times 3-6 weeks. We note that the 
southernmost island state of Tasmania is not 
resolved as landmass in POAMA due to 
characteristics of the model grid and resolution, 
and thus we only consider the mainland of 
Australia here. POAMA-2 best reproduces the 
observed SAM-rainfall relationship in the JJA 
and SON seasons. In particular for JJA, the 
model captures the decrease in rainfall over the 
tip of SWWA and over south-eastern Australia to 
the west of the Australian Alps as reported by 
Hendon et al. (2007). Reasonable agreement 
between modeled and observed SAM-rainfall is 

also achieved over some parts of Australia in DJF 
and MAM, although the impact of the SAM on 
increased rainfall in DJF is stronger than 
observed over the southeast and weaker than 
observed over the northwest. And, over parts of 
northern Australia in DJF, the positive rainfall 
anomalies in the model appear in contrast to the 
negative anomalies observed. We note that the 
POAMA-2 representation of SAM rainfall in all 
seasons is very similar to that of POAMA-1.5 
shown in Marshall et al. (2011b). 
 

In general for all seasons, the larger-than-
observed rainfall increases during high SAM 
over eastern Australia can be explained by the 
fact that POAMA shows a bias in its 
representation of the SAM, as demonstrated by 
composite maps of MSLP (shown in Marshall et 
al. 2011b for POAMA-1.5 with a similar 
representation for POAMA-2; not shown). 
Although POAMA simulates the large-scale 
characteristics of the SAM reasonably well, a 
positive MSLP bias develops to the south of 
Australia over the first few weeks of the hindcast 
which highlights the impact of model errors and a 
drifting basic state on the depiction of the SAM 
as the model atmosphere spins up to reach its 
preferred climatology. This positive MSLP bias 
leads to an intensification of the south-easterly 
anomalies around the southern and eastern 
perimeters of Australia, relative to those observed 
(seen in all seasons in Figure 5), which act to 
drive more moisture from the surrounding oceans 
to the southern and eastern fringes of the 
continent and thus impact the representation of 
SAM-rainfall in the model. 
 
Based on the knowledge that (i) POAMA-2 
provides skilful prediction of the SAM index 
beyond 2 weeks (Figure 4), and (ii) that the 
teleconnection between the SAM and 
extratropical rainfall over Australia is best 
simulated in JJA and SON (Figure 5), we turn 
our attention to the ability of the model to predict 
winter/spring rainfall for weeks 2 and 3 in 
association with the SAM. Verification for the 
fortnight comprising the average of weeks 2 and 
3 in June-November (JJASON) forecast start 
months is shown in Figure 6 in the form of 
correlation, which measures the linear 
correspondence between the ensemble mean 
forecast and observed. We further stratify the 

 
Figure 5 Weekly-mean composites of rainfall and 
10m wind vectors for the high-minus-low index 
polarity of the SAM in JJA (top row), SON (second 
row), DJF (third row), and MAM (bottom row), 
for observations (left column) and POAMA-2 
hindcasts averaged over lead times of 3-6 weeks 
(right column). The total number of cases for the 
high and low SAM polarities is shown in the title 
of each panel. 
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data according to the strength of the SAM index 
at the initial time by defining “large SAM” (38 
cases) as occurring when the index is either high 
(greater than the mean plus 1 standard deviation) 
or low (less than the mean minus 1 standard 
deviation), and “small SAM” (39 cases) as 
occurring when the absolute magnitude of the 
SAM index is less than the mean plus half a 
standard deviation. We remove the impact of 
ENSO by omitting El Niño and La Niña years 
from the analysis, since ENSO negatively 
correlates to SAM in spring. 
 

 
Figure 6 clearly shows significantly higher skill 
in forecasting rainfall in weeks 2 and 3 during 
JJASON over much of south-eastern Australia 
when the SAM is large compared to when it is 
small. Having identified south-eastern Australia 
as being affected by the SAM on intra-seasonal 
timescales both in observations and in the model 
in JJA and SON (Figure 5), our results show that 
the SAM contributes to intra-seasonal rainfall 
predictability. A similar result is seen for 
forecasting maximum temperature, with 
POAMA-2 in fact producing higher correlation 
skill over most of the continent when the SAM is 
large compared to when it is small (Figure 6). 
 
We further note that the skill for predicting 
SAM-related anomalies in POAMA-2 shows a 
small improvement upon POAMA-1.5 (not 
shown) for rainfall over the southwest and 

northeast, and for maximum temperature over 
most of continent, consistent with the slight 
improvement in skill for predicting the SAM 
index in POAMA-2 compared with POAMA-1.5 
(Figure 4). 
 
Conclusions 
The new POAMA-2 intra-seasonal forecast 
system demonstrates improved skill compared to 
POAMA-1.5 in predicting the MJO and SAM, as 
embodied by the increased ability to predict the 
RMM index by about 1 week lead time and the 
SAM index by about 1 day lead time. The spatial 
structure of simulated rainfall in association with 
each climate driver in weeks 3-6 is comparable to 
that in POAMA-1.5, however the improved 
prediction of the MJO and SAM indices in 
POAMA-2 translates into improvements in intra-
seasonal prediction of Australian rainfall 
anomalies in association with the MJO in 
November-April and the SAM in June-
November. We attribute these increases in skill to 
the production of perturbed initial conditions 
using coupled breeding that were introduced in 
POAMA-2. 
 
Analysis of forecast skill in the three individual 
model versions of POAMA-2 give similar results 
(not shown), suggesting that there is little benefit 
to the present multi-model approach at intra-
seasonal timescales. This is because each model 
version uses the same set of perturbed initial 
conditions, and as such the benefit of using 
different model formulations is only evident at 
much longer lead times for which ensemble 
spread develops as a result of model differences 
(Wang et al. 2011). Future development of 
POAMA will include using different perturbed 
initial conditions for each model version, to 
better simulate ensemble spread at intra-seasonal 
timescales. 
 
Real-time forecasts using POAMA-2 are now 
being produced as experimental products on the 
POAMA web site for feedback from applications 
research groups. This feedback is assisting with 
the operational development of POAMA for 
seamless prediction across synoptic, intra-
seasonal and seasonal timescales. 
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Introduction 
A second-generation tsunami scenario database, 
named T2, has been developed to provide 
guidance for the Joint Australian Tsunami 
Warning Centre (JATWC), and is documented in 
Greenslade et al. (2009). As of 2010, the T2 
scenario database consisted of 1,865 scenarios 
representing tsunamis generated by earthquakes of 
magnitudes of Mw = 7.5, 8.0, 8.5 and 9.0. With 
linear scaling, the T2 scenarios can provide 
guidance for earthquake magnitudes ranging from 
Mw = 7.3 to Mw = 9.2. Analysis of the water 
elevation from the T2 scenarios in the Australian 
coastal zones suggests that  an earthquake of 
magnitude below Mw = 7.0 would not generate 
any warnings for Australia (Greenslade et. al. 
2009), however there is a need to provide forecast 

guidance for tsunamis generated by earthquakes 
of smaller magnitudes due to JATWC’s 
commitment to operate as a Regional Tsunami 
Service Provider within the Indian Ocean 
Tsunami Warning System (JATWC, 2011). This 
paper describes a series of additional magnitude 
7.0 scenarios, as well as a further individual 
scenario which have been added to the T2 
scenario database.  
 
Magnitude 7.0 scenarios  
The earthquake parameters for the existing 
scenarios are shown in the yellow shaded areas in 
Table 1 (reproduced from Greenslade et al. 2009). 
The new scenarios described in this paper are 
shaded in blue. 

 
 

Table 1 Rupture dimensions for T2 scenario database 

 
 
The choice of the dimensions and locations of 
the Mw = 7.0 scenarios is not straightforward and 
this section discusses the approach taken. The 
specific characteristics of the ruptures that must 
be predetermined are the rupture length, width, 
slip and epicentre location. However, there is 
limited data on the typical range of rupture 
dimensions for subductive type Mw = 7.0 

earthquakes. A reliable estimate of rupture 
length (L) can be extracted from the slip-
predictable model of past subductive earthquakes 
of Pacheco et al. (1993)  (heretofore referred to 
as Pac93). In Figure 1, the compiled L-Mw 
relationship from the data in Table 4 of Pac93 is 
shown.  The moment magnitude in this Figure 
was derived from seismic moment (Mo) 

Number of 
scenarios 

Magnitude Mw Seismic moment 
Mo (Nm) 

Width W 
(km) 

Number 
of rupture 
elements 

Length (approx.) L 
(km) 

Slip uo (m) 

203 7.0 3.9 x 1019 35 1 50 0.5 
521 7.5 2.24 x 1020 50 1 100 1 
521 8.0 1.26 x 1021 65 2 200 2.2 
471 8.5 7.2 x 1021 80 4 400 5 

351 9.0 
(standard) 4.0 x 1022 100 10 1000 8.8 

1 9.0 
(Sandwich only) 4.0 x 1022 100 8 800 11 

1 9.0 
(Puysegur only) 4.0 x 1022 100 6 600 14.7 
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following Hanks and Kanamori (1979): 
 

€ 

Mw =
2
3
log10Mo −9.1( ) 

 
Since the relationship shown in Figure 1 is 
scattered, and there are only three points for 6.8< 
Mw<7.0, a correlation analysis is not feasible. 
However,  inspection suggests that a length of 50 
km < L < 70 km is a reasonable range. 
 

 
Figure 1 Rupture length against magnitude for 
subductive earthquakes, compiled from the data 
presented in Pacheco et al. (1993). 

 
Pac93 showed that estimates of rupture width 
(W) from smaller earthquakes are unreliable due 
to limited and highly scattered data, although 
inspection of Figure 13e in Pac93 suggests that a 
value of 50km is a reasonable value for width.  
 
Wells and Coppersmith (1994) (heretofore 
referred to as WC94) derived correlations 
between rupture dimensions and Mw from 
extensive earthquake data, but subductive 
earthquakes were excluded. However it is worth 
noting that for all the types of earthquakes 
presented, their correlations for Mw = 7.0 
earthquakes yield 30 km < L < 50 km and 13 km 
< W < 20 km.  In addition, they present a very 
tight correlation between rupture area (A) and 
Mw, yielding A ~ 1000 km2 for Mw = 7.0 
earthquakes.  These values are somewhat 
consistent with Pac93. Note that in order to 
derive the values above, we used the equations 
presented in Table 2A in WC94, incorporating 
the standard deviations in order to obtain  the 
maximum range of values.  
 

WC94 observed included a more scattered slip 
relationship. For MW = 7.0, these correlations 
yield slip values of 0.5m < uo < 2.5 m for 
ruptures with length values of  40 km < L < 70 
km. 
 
Summary of Possible Rupture Dimensions  
Based on the discussion above, it appears that 
realistic rupture dimensions for Mw = 7.0 
earthquakes are: 

 
  Length (L): 30 – 70 km  
  Width (W): 13 – 50 km 
  Slip (uo): 0.5 - 2.5 m 

 
In order to maintain continuity within the T2 
scenario database, the choice of width should 
ideally be less than the MW = 7.5 widths of 50 
km. On the other hand, the lower limit for width 
above, although physically realistic, may in 
computation present too narrow a source width 
compared to the horizontal grid size. Bearing in 
mind that the largest grid size for T2 is 7 km, it 
is reasonable to choose a value larger than 30 km 
in order to prevent excessive numerical 
dispersion due to poor wave resolution. It can be 
shown from the results of Simanjuntak and 
Greenslade (2011), that for the range of widths 
presented above, a width discrepancy of 20 km 
would produce a bias that is less than 13%.  For 
a typical Mw = 7.0 tsunami entering the 
Australian coastal zones, this bias translates to 
less than 0.5 cm.  
 
From the above considerations and discussions 
within the JATWC, the final decision on rupture 
dimensions is as shown in the first row of Table 
1, i.e. W = 35 km, L = 50 km, and uo = 0.5m. 
Other factors, such as dip and strike are a direct 
function of the location. The depth of the top of 
the rupture is fixed at 10 km, as for all the other 
T2 scenarios.  
 
Locations of Rupture Elements 
The epicentres of the existing T2 scenarios have 
been specified so that the mid-points of the top 
edges of the ruptures are coincident for all 
scenarios of any magnitude at a particular 
location. This means that the Mw = 7.5 scenarios 
are staggered relative to the locations of the 
rupture elements of the other magnitude 
scenarios (see Figure 3 in Greenslade et al., 
2009). An obvious positioning for the Mw = 7.0 



Extensions to the T2 Tsunami Scenario Database                                                                              19 

© 2011 CSIRO and the Bureau of Meteorology                                                                                      www.cawcr.gov.au/publications/researchletters.php 

 

scenarios is to have the central points of the top 
edges of the ruptures coinciding with those of the 
Mw = 7.5 scenarios. The distance between the 
centroids of these ruptures is 100 km, with 
rupture lengths of 100 km and there are 521 of 
them throughout the entire Indian and Pacific 
Oceans.  
 
As discussed above, the Mw = 7.0 ruptures have 
lengths of less than 100 km, so this means that if 
they are located co-incident with the Mw = 7.5 
scenarios, the ruptures will be ‘non-contiguous’ 
and there will be gaps of 50 km between each 
rupture. Alternative solutions could be to either 
define the Mw = 7.0 scenarios with longer 
ruptures to reduce the gaps, or to define new 
epicentres which are a distance L apart,  so that 
the ruptures are contiguous.  Making the ruptures 
contiguous will necessitate the creation of 
scenarios with “non-orthodox” epicentres, which 
will cause complications in the existing scenario 
numbering scheme and will require considerably 
greater computing resources (in terms of both 
computation and storage). Although non-
contiguous ruptures may cause issues with 
scenario selection during an event, the epicentre 
of an event will never be more than 50 km away 
(along the strike) from the closest scenario. 
Therefore, the Mw = 7.0 scenarios have been 
generated with epicentres at the same locations 
as the Mw = 7.5 scenarios, and the gaps between 
the ruptures will be tolerated. 
 

 
 
Figure 2 T2 domain and rupture locations. The 
locations of epicentres of the Mw = 7.0 scenarios 
are shown in red.  
 

The 203 locations of the epicentres of the Mw = 
7.0 scenarios are shown in Figure 2. These 
locations are those that are a) within the Indian 
Ocean and/or b) likely to affect Australia.  
 
 
(a) 

 
 
(b) 

     
Figure 3 Slip distributions for the (a) 2008 
Kermadec earthquake (reproduced from Hayes, 
2008) and (b) 2011 Vanuatu earthquakes 
(reproduced from Hayes, 2011a).  We have 
added dashed rectangles and the rulers 
delineating ideal rupture boundaries. 

 
Verification 
Ideally, these scenarios would be verified against 
observational data. There are very few 
observations of tsunami waves from tsunami 
buoys for earthquakes below Mw = 7.5.  Tsunami 
amplitudes from these events are typically less 
than 1cm, which is too small to warrant a reliable 
comparison with the numerical model. In the 
absence of the possibility of verifying the 
tsunami sea-level, we compare the rupture 
characteristics from the new scenarios to slip 
distributions from finite fault analyses of 
previous earthquakes. These are taken from the 
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USGS database1. From 2004 to 2011, there are 
only two Mw < 7.5 tsunamigenic earthquakes 
within the south east Pacific region for which 
finite fault analyses are available. These are the 
29 September 2008 Mw 7.0 earthquake along the 
Kermadec fault, and the 20 August 2011 Mw 7.1 
earthquake off Vanuatu. Notice that the latter 
event occurred after the Mw = 7.0 scenarios were 
completed.  
 
Figures 3a and b show the slip distributions for 
the 2008 Kermadec and 2011 Vanuatu 
earthquakes, respectively. Inspection of these 
Figures suggests rupture lengths of 
approximately 50 km. The vertical axis in Figure 
3(a) is the depth, whereas that of Figure 3(b) is 
the distance along the dip (which is the definition 
of rupture width in T2). For conversion to width, 
depth must be multiplied by the reciprocal of the 
sine of the dip angle. For dip angle of 30 degrees 
for the Kermadec event (Hayes 2008), the 
delineated depth of 16 km (Figure 3a) translates 
to width of 32 km. The average slip values for 
the ruptures (defined by the area where slip is 
greater than 10 cm) were calculated to be 35 cm 
and 50 cm, respectively. These values are similar 
to the chosen dimensions of the new Mw = 7.0 
scenarios, confirming that these are reasonable 
choices. 
 
Magnitude 9.0 Puysegur scenario 
Within the T2 scenario database, Mw = 9.0 
scenarios have only been generated on 
subduction zones that could support ruptures of 
1000 km length (with the except of the South 
Sandwich subduction zone). This 1000 km 
rupture length was based loosely on the Indian 
Ocean event of 2004. The Puysegur subduction 
zone, south of New Zealand, is only ~600 km 
long (Bird, 2003) and so was not deemed 
capable of supporting a Mw = 9.0 earthquake. 
Until now, the highest magnitude scenario in this 
region was a Mw = 8.5, which could be 
appropriately scaled to provide guidance for 
earthquakes of Mw up to 8.7. 
 
The JATWC recently requested numerical 
guidance for larger earthquakes in this area. 
Furthermore recent large events have 
                                                
 
 
1  http://earthquake.usgs.gov/earthquakes/world/historical.php 

demonstrated that very large earthquakes can be 
generated with ruptures significantly shorter than 
1000 km. The Chile 2010 event (Hayes, 2010) 
was Mw = 8.8 and had a rupture length of 
approximately 400 km  and the Japan 2011 event 
was Mw = 9.0 with a rupture length of 
approximately 300 km (Hayes, 2011b). It 
therefore seems prudent to provide numerical 
guidance for a Mw = 9.0 on the Puysegur 
subduction zone. This has been done, and the 
rupture details for this are shown in Table 1.  
 
Summary 
A total of 204 new scenarios have recently been 
added to the T2 scenario database, consisting of 
203 Mw = 7.0 simulations and one Mw = 9.0 
simulation. The rupture dimensions for these 
new scenarios are shown in the blue shaded areas 
in Table 1. 
 
An obvious advantage of having Mw = 7.0 
scenarios in the T2 database is that numerical 
guidance for tsunamis generated by earthquakes 
of Mw less than 7.3 can now be scaled from the 
nearest Mw = 7.0 scenario instead of the Mw = 7.5 
scenarios.  The extended T2 scenario database 
now consists of 2,069 scenarios and, with 
appropriate scaling, can provide guidance for 
any earthquake from Mw = 6.8 to Mw = 9.3 in the 
Indian Ocean and south-west Pacific, and Mw = 
7.3 to 9.2 elsewhere. 
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Introduction 
In the past five years, CAWCR has been 
developing the new ACCESS coupled climate 
model, which uses as its atmospheric component 
the Met Office’s Unified Model (UM). Over this 
time, the Model Evaluation group in the Earth 
System Modelling Program has developed 
methods for objectively assessing the 
performance of the model. In late 2010 the 
group accepted an invitation to join the Met 
Office Hadley Centre’s project ‘CAPTIVATE’ 
(standing for Climate Processes, Variability and 
Teleconnections), which aims to evaluate the 
simulation of climate processes in successive 
versions of the Hadley Centre’s new coupled 
climate model, HadGEM3, that also incorporates 
the UM. CAPTIVATE comprised a develop-
ment and evaluation cycle featuring rounds of 
assessment of standardised and internally 
documented model versions at 6-monthly 
intervals.  The CAWCR task was to perform 
evaluations for the Australian region, on both 
coupled and atmosphere/land-only versions of 
HadGEM3, using the Hadley Centre’s preceding 
model, HadGEM2, as the ‘Reference’ to which 
the HadGEM3 solutions are to be compared. 
CAWCR was involved in two rounds of 
assessment, for model simulations performed 
around September 2010 and March 2011, prior 
to the completion of the project. The final report, 
Scaife et al. (2011), includes a summary of 
various global and regional assessments, 
including that for Australia in ‘traffic light’ 
form. Similar evaluations have been made on 
preliminary versions of ACCESS as reported in 
brief by Watterson (2011b). 
 
The main purpose of this paper is to present the 
assessment method in some detail. We describe 
tests targeting features of the mean state 
climatology (CLIM), variability (VAR) and 
teleconnections (TELE) that are important to 

Australian climate. The tests are applied here to 
the Hadley Centre simulations of the present-day 
climate for the CAPTIVATE project, described 
in the next section. Application to ACCESS will 
be reported in due course. The assessment of the 
variability and teleconnection focuses on 
Australian rainfall and its ‘drivers’, specifically 
tropical SST anomalies and atmospheric 
circulations, represented in novel ways. The 
observational results are of considerable interest 
in their own right. 
 
CAPTIVATE Models 
The Reference model (denoted ‘Ref’ in Table 1 
along with the code names of the specific runs 
analysed) is the HadGEM2-AO (coupled) and 
HadGEM2-A (atmosphere/land) model as 
described by HadGEM2 Development Team: 
Martin et al. (2011).  The atmospheric 
component is the HadGEM2 r1.1 atmosphere 
based on the UM version 6.6.3, with resolution 
denoted N96L38, with a grid spacing of 1.25º 
latitude and 1.875º longitude, and with 38 levels 
in the vertical. The MOSES land surface model 
is used and the ocean and sea ice codes are 
directly coupled to the atmosphere. The ocean 
resolution is 1º latitude/longitude with additional 
refinement in the tropics. 
 
The standard HadGEM3 model versions 
evaluated for both rounds have atmospheric 
components again with N96 horizontal 
resolution, but with higher vertical resolution 
(85 levels) and a revised atmospheric 
configuration (GA2.0, vn7.6 for round 1; GA3.0, 
vn7.7 for round 2 – see Walters et al. 2011). The 
JULES land surface model (Best et al. 2011) is 
used.  The coupled model uses the CICE sea-ice 
model (Hunke and Lipscombe, 2008), OASIS 
coupler (Valcke, 2006) and the ORCA 
configuration of the NEMO ocean model 
(Madec 2011), on a tripolar grid with nominal 
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resolution 1°, and with additional refinement in 
the tropics. . Hewitt et al. (2011) describe the 
technical infrastructure of the coupled model, 
together with the specifics of the CICE and 
NEMO implementations. A HadGEM3 version 
with higher horizontal resolution (suffix ‘H’) 
was also assessed for the second round, having 
an N216 grid for the atmosphere (0.55º lat. by 
0.83º lon.) and the ORCA 0.25° ocean. A 
coupled and an atmosphere/land-only simulation 
are performed for each version. The later follow 
the ‘AMIP’ experimental procedure, run for the 
period 1979-2008 with specified observed 
monthly sea surface temperature (SST) and sea 
ice extent, and are denoted suffix ‘A’. 
 
Details of the configurations used can be found 
in Walters et al. (2011) and Scaife et al. (2011). 
During the project changes were made to the 
parameterisations of convective cloud, light rain, 
and boundary layer physics. These targeted 
biases in the North Atlantic storms tracks, Indian 
monsoon, ENSO and Southern Ocean 
temperatures. The changes were not specific to 
Australian climate, but may influence it. The 
simulations assessed in the ‘Round 1’ (or R1) 
and ‘Round 2’ (R2) assessments are listed in 
Table 1. Model data length was less than ideal 
with 30-y means used for the CLIM tests. For 
VAR/TELE 50-y monthly series were available 
for the three fields used, except for R2 (only 26 
y). 
 
For an initial look at the model climate for 
Australia, we include the overall means of 
surface air temperature ‘T’ and precipitation 
‘Ppn’ in Table 1. These can be compared to the 
observational averages of Bureau of 
Meteorology (BoM) gridded (0.25°) monthly 
fields averaged over 1958-2001 (matching the 
period of the ERA-40 reanalysis data). The BoM 
T is the average of the daily maximum and 
minimum fields. A second data set is the ERA-
Interim reanalysis (1.5° grid) over 1989-2008. 
All model results are within 1°C or 0.3 mm/d of 
one of the ‘obs’. The R2 (coupled) model is an 
improvement on R1, and marginally on Ref. The 
R2H version is closer to the average of obs. 
Interestingly, while the A versions have little 
variation in temperature, as expected from the 
constrained SSTs, there is a wider range for Ppn 
than in the coupled models. 
 

Maps of the Ppn fields from BoM and five 
versions are shown in Figure 1. All models 
simulate the basic pattern. R2H has the closest 
match to the dryness in the centre, but is too dry 
in the northeast. Rainfall along the wetter coasts, 
including the southwest, tends to be too light. 
The two H versions begin to resolve the 
orographic enhancement in the southeast. 

Table 1 CAPTIVATE model versions (see text) 
and the run name, together with their Australian 
mean temperature and rainfall. The first four 
entries are coupled models. The atmosphere/land-
only models are indicated by ‘A’, and high-
resolution by ‘H’. Observational data from two 
sources also given. 

Model Run T °C Ppn mm/d 
Ref ajpdr 21.31 1.23 
R1 ajtzd 23.11 1.64 
R2 ajtzr 22.36 1.39 
R2H xfhhk 22.28 1.22 
RefA ajhbc 22.45 0.90 
R1A ajrih 22.27 1.47 
R2A akkvi 22.79 1.11 
R2AH ajthm 22.57 1.35 
obs BoM 21.84 1.36 
obs ERA-Int 22.12 1.17 

 

 
Figure 1 Annual precipitation (in mm/d) for the 
Australian region. The BoM observations  are shown 
as (a), along with four coupled model fields, (b) Ref, 
(c) R1, (d) R2, (e) R2H, and the AMIP (f) R2AH. 
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Climatology Tests ‘CLIM’ 
The Australian summary chart includes, under 
CLIM, assessment of T, Ppn and seven features 
of atmospheric circulation (Table 2). Restricting 
the test to seasonal climatologies of available 
variables meant that features such as ‘monsoon 
onset’ could only be assessed in a very 
approximate way. A further simplification was 
the testing of only spatial fields over suitable 
domains, using the non-dimension metric ‘M’. 
 
For the model field X and observed field Y, this 
statistic of agreement is given by  
M = 1000 × (2/π) arcsin[1 – mse / (VX +VY + (GX – GY)2)],  

with mse the mean square error between the 
model field X and observed field Y, and V and 
G are variance and domain mean of the fields (as 
subscripted, see Watterson et al., 1999 for 
details). Using M allowed scores for different 
variables and seasons to be averaged.  
 
The four domains used are:   
 Aust    land,    
 Region  105-165°E, 50-0°S;  
 Monsoon Onset   120-150°E, 20-10°S; 
 SubTropical Jet    140-150°E, 40-15°S. 
 
The variables (using the CMIP5 names) and 
domains for each test are given in Table 2. All 
four standard seasons were used, except for 
monsoon onset, for which September-November 

and December-February results were averaged. 

Two observational datasets are used in each test. 
These differ by source and averaging period. 
Comparing the secondary set (obs2) with the 
primary set (obs1) provides some indication of 
the value of a metric that a ‘near-perfect’ model 
might be able to attain. For most quantities, the 
primary set is from the ERA-Interim reanalyses, 
(as above, but with January-February 2009 also 
used in the DJF case). The secondary set is from 
ERA-40 (2.5° grid). For the tests T and Ppn, 
obs1 is from BoM (as before), and ERA-Interim 
is obs2.  
 
The scores for Obs2 (versus Obs1) are mostly 
above 850, which indicates strong similarity 
between these data sets. For Ppn, however, there 
is considerable differences between the data sets. 
The model results score mostly around 700-800 
for the dynamical fields, and 600 for Ppn. 
Generally the A cases score a little better than 
the coupled cases, as expected, though only for 
T and 500GPH does the RefA case do better 
than Ref. The R1A and R2A cases have 
improved on RefA. In some cases, the high 
resolution model has an improved score, but 
these tests have little sensitivity to small details 
(such as those seen in Figure 1).  
 

 
Table 2 CLIM tests for ten features, with variables and domain given, followed by scores for Obs2 
and eight models, compared with Obs1. The colour grades are indicated. Note that swapping rows 
and columns might be helpful to match other tables. 
   Feature Fields-  

CMIP5 name 
Domain obs2 Ref R1 R2 R2H RefA R1A R2A R2AH 

1.5m T tas Aust 875 810 720 770 816 821 827 789 830 

850wind ua, va 850hPa Reg 887 727 749 764 774 747 795 803 816 

200wind ua, va 200hPa Reg 903 747 772 714 735 656 780 760 786 

SLP psl Reg 948 800 750 760 739 805 830 816 793 

500GPH zg 500hPa Reg 973 892 917 890 900 933 928 933 934 

10m wind uas, vas Aust 809 768 737 742 757 736 771 761 772 

Ppn pr Aust 690 573 613 567 580 489 601 546 619 

Mons. Ons. uas, vas  
ua 925hPa 

N. Aust 909 724 711 725 761 717 768 773 762 

SubTJet ua, 925, 850,  
250, 200 hPa 

E. Aust 941 804 769 751 821 781 790 839 811 
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Overall the R1 and R2 coupled models give 
rather similar results to Ref. This is made clearer 
using the colour grades applied to the scores, as 
follows:     
 Green   av of Obs2, 850   
 Yellow    > Ref +10   
 Amber    within Ref ± 10  
 Red        <  Ref −10. 
 
The criterion for Green, which is ideally ‘fit for 
purpose’ is subjective. It is evident from Table 2 
that for the Australian features the new coupled 
versions have not improved on Ref overall 
despite the higher resolution of HadGEM3. The 
improvement in the A cases is encouraging, 
nevertheless. 
 
Variability and Teleconnection 
The summary chart includes under VAR/TELE 
a range of features such as those depicted and 
assessed by Risbey et al. (2009). Given the time 
and data limitations, and the need to examine 
both observations and multiple models, it was 
decided to assess only seasonal and regional 
rainfall and several drivers of variability. 
Furthermore only the Ref, R1 and R2 models 
were assessed. 
 
Time series of rainfall are readily available from 
the BoM website for seven key regions, as listed 
in Table 3. Some of the detail in rainfall patterns 
is lost by this choice, but the standard resolution 
global models are not expected to simulate this. 
The first region is the all-Australia average 
(All), and clearly there is some overlapping of 
regions. Two regions are ‘north’ (Nth) and 
‘south’ (Sth), divided by the latitude 26°S. The 
eastern region is the four eastern states (in a 
model this is simplified to be east of 141°E). 
The southeastern (SE) region is south of 33°S 
and east of 135°E (see Figure 2, for the region as 
represented by an N96 model). Southwestern 
(SW) is the far southwest of WA (in a model, 
the land bounded by 115-120°E, 35°S-31°S). 
The Murray Darling Basin (MDB) is the seventh 
region, simplified to 139-150°E, 37-25°S. 
 
Likewise, we represent drivers only in a coarse 
way. Watterson (2011a) argued that the gradient 
of SSTs from the north-west to north-east of 
Australia is a basic feature that models should 
simulate. This is quantified by a Pacific (minus) 
Indian Dipole index (PID). Analysis has shown 

that this is closely related to the more commonly 
studied ENSO and Indian Ocean Dipole (IOD) 
indices, though, for the annual case, PID 
displays similar or higher correlations with the 
regional rainfall series. Tests indicate that 
stronger correlations are obtained with the 
Indian Ocean region extended to the north of 
Australia, with the band becoming 15°S-5°N, 
85-135°E (Figure 2). The Pacific region remains 
10°S-10°N, 150-200°E. Averages of T over 
ocean points in each domain are taken, and the 
simple difference forms PID, with unit K. 
 
Atmospheric circulation features that drive 
rainfall are here limited to a sectoral SAM 
(southern annular mode) or ‘high latitude mode’ 
HLM and two sub-domain blocking indices 
(BIs). All three are formed from box averages of 
the zonal wind (ua) at 500 hPa. HLM is based on 
longitudes 80-170°E, and the box over 60-55°S 
minus that over 40-35°S (see Figure 2). For the 
BIs, the longitude spans are 135-155°E (east BI 
or EBI) and 110-130°E (WBI). In each case, the 
latitudes of the boxes are over 50-45°S and 30-
25°S, and again the index is simply the southern 
value minus the northern value. 

 
Figure 2 Some regions used in the assessment, on 
the model grid.  Three Australian land regions are 
shown (SE, SW and NTH). The tropical ocean 
regions (PAC, IND) are used for PID. The regions 
for the wind indices HLM, EBI and WBI (on the 
surface grid) are plotted, with s and n denoted the 
southern and northern components. SE extends 
under HLM-n. 
 

The EBI should relate especially to southeastern 
regions, while the WBI relates to the southwest. 
For simplicity, all the tests use time series of 
yearly values of area averages, of either annual 
(calendar years) or seasonal means (of three 
consecutive months). 
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Variability Assessment (VAR) 
In our VAR tests we consider the variability of 
the rainfall (Ppn, in seven regions) and the four 
indices (PID, HLM, EBI and WBI) in each of 
five seasons (counting annual mean as one). 
Naturally, there is overlap in the time period, as 
in the regions, but ultimately we need a single 
objective grade in all these tests! 
The only statistic used is the standard deviation 
(SD) of each series. For rainfall, we consider the 
SD as a percentage of the mean rainfall. The 
magnitude of the difference in model SD from 
the observational SD is a basic bias measure. To 
focus on the contribution from year-to-year 
variability the SD is calculated from detrended 
indices. Detrending removes part of the variation 
forced through global warming (although this is 
less linear before 1950). In model runs, some 
(linear) climate drift may occur, and this is 
removed.  
 
Observational results 
The BoM Australian series for 1900-2010 are 
used (with 111 yearly values, including summer, 
which includes Jan-Feb of 2011). For reference, 
the mean for each region is given in Table 3, for 
the annual case. The SD ranges from 16% (SW) 
to 24% (MDB) as a percentage of the mean in 
the annual case (Table 3). The peak values 
among the four seasons feature in Table 4. 
Except for the SE and SW, with a peak in 
winter, there is generally more rain in summer. 
Variability as a percentage peaks in different 
seasons, depending on the region. It tends to be 
largest in the driest season. The average of the 
SD values, over all 35 cases, is given in Table 5. 
For SST, the HadISST data (1° grid) over 1950-
2010 are used (plus Dec 1949). This provides 61 

yearly values, for both the SD and the 
correlation with rain. The average of the SD 
values (5 cases) is 0.35 K (Table 5). For the 
wind indices, reanalysis data over 1957-2010 are 
used. Over 1989-2010, ERA-interim is used, and 
prior to that ERA-40. In the dozen years of 
overlap between these two reanalysis sets, the 
values are closely related – nevertheless any bias 
in the time mean (including that due to the 
different grids) in that period is added to the 
earlier ERA-40 data. Interestingly, the average 
SD for HLM is quite close to that of the two BIs 
combined (Table 5). 

 
Table 3 Observed annual statistics, for the 
seven rainfall regions. Shown are the mean 
and SD of rainfall, and the correlation of 
annual values with those of the four driver 
indices. Theses are HLM (a sectoral SAM), 
EBI eastern blocking index, WBI western 
blocking index, PID (SST index, Pacific-
Indian Dipole). 
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All 1.24 17 16 −9 11 −55 

East 1.67 21 18 −22 −4 −63 

Nth 1.41 20 10 5 25 −45 

Sth 1.05 17 23 −33 −17 −64 

SE 1.72 17 7 −51 −33 −55 

SW 1.86 16 −19 −21 −39 −28 

MDB 1.29 24 26 −30 −15 −63 

 

 
 

Table 4 Observed seasonal statistics, for the seven rainfall regions and their drivers (as in Table 3). The 
season with largest magnitude result is indicated, along with the result. Code S summer, A autumn,  
W winter, P spring. 
 Ppn Mean mm/d Ppn SD (%) HLM r x 100 EBI r x 100 WBI r x 100 PID r x 100 

All S 2.31 P 37 P 26 S 47 S 47 P−76 

East S 2.92 P 39 P 26 W −34 S 32 P−69 

Nth S 3.33 W 57 W 21 S 50 S 51 P−77 

Sth S 1.14 A 33 S 43 W −48 W−54 P−67 

SE W 2.06 S 33 S 37 W −68 W−67 P−58 

SW W 3.62 S 67 W−36 P −37 W−61 P−24 

MDB S 1.56 A 48 S 37 W −41 W−39 P−61 
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Table 5 Variability (VAR) of rainfall and of indices from obs and models, including mean bias. In each case the 
result is an average over the five seasons (including annual). The rainfall is given as a percentage of the mean, and 
the average is over the seven regions as well. For BI, the average is over the EBI and WBI. The bias is calculated by 
averaging the absolute differences from the obs results. 
 Ppn  SD % 

 
Ppn  bias % 
 

HLM  SD m/s HLM  bias m/s  BI  SD m/s BI  bias m/s PID  SD K 
 

PID  bias K  

obs 31.3 0.0 3.45 0.0 3.34 0.0 0.353 0.0 
Ref 31.7 4.2 3.76 0.40 3.26 0.44 0.294 0.059 
R1 30.6 5.2 3.92 0.67 3.23 0.58 0.495 0.141 
R2 29.7 6.9 4.58 1.14 3.38 0.52 0.241 0.113 

 

The corresponding rainfall and driver time series 
have been calculated from the three models 
considered here. While individual results would 
be of interest, for brevity we present only the 
averages, starting with the SDs, given in Table 
5. The overall variability of rainfall, as a 
percentage, is remarkably well matched by the 
Ref model, as well as R1 and R2. Note though 
that larger SDs (in %) for the SW region, which 
is drier than observed (see Figure 1), tend to 
compensate for smaller SD in some other 
regions. Overall variability in the wind indices is 
also quite realistic, while the PID is more 
variable than observed in R1 but less in R2. 
 
The score statistic is simply the magnitude of the 
difference between the model SD and the obs 
SD (or ‘bias’), for each case. We could consider 
only the larger values, but, as with TELE, it 
seems also important that the model produce 
small values, when they occur in obs. For our 
single grade we average over all cases, and 
assign colours. Without an objective target for 
Green, we take the criterion value to be simply 
half the largest of the three results. (For the 
initial report an additional ACCESS case was 
included, but the grades are unchanged by its 
omission.) For Amber, the mean difference is to 
be within 20% of the Ref result, allowing for 
statistical uncertainty in both obs and model 
SDs. This criterion is again subjective, but is 
rather consistent with the range of values found 
when assessing different 50-year periods from 
longer ACCESS runs. 
 
The final scores and the colour grades are given 
in Table 5. For Ref, the average bias is within 
17% of the average SD in each quantity. Given 
that statistical uncertainty will produce positive 
bias for each case, this seems excellent. Two 
scores are rated Green here. Both R1 and R2 
have somewhat less success in each category 
(with only one Amber). With only 26 years of 

data for R2, we should expect that its results are 
degraded by chance. Still, there is no 
improvement over Ref evident, and little over 
R1. 
 
Teleconnection Assessment (TELE) 
The TELE section focuses on the links between 
these drivers and rainfall. The statistic is the 
correlation r between each pair of detrended 
series. Only the contemporaneous (zero time 
lag) relationship is considered. With 50 yearly 
values in most cases, correlations need only be 
0.2 or so to be of statistical significance. We 
need not focus on this, given that values would 
need to be larger to be of practical significance, 
but uncertainty is not ignored.  
 
The observational results, calculated from 
coincident periods of the data, are of particular 
interest. The correlation between each regional 
series and the annual series of each index is then 
shown in Table 3. The HLM wind index is 
positively correlated, except for the SW. This 
might be expected from previous results for the 
(all-longitude) SAM (e.g., Risbey et al., 2009), 
given that the drying associated with higher 
SAM is mostly seen in the far south and in 
winter. Enhanced easterlies further north tend to 
raise rainfall over much of the continent. The 
largest magnitude seasonal correlations are 
given in Table 4. The SW value for HLM is 
more strongly negative in winter, while the 
positive cases are stronger in summer. The 
average magnitude of the correlation, given in 
Table 5, is rather small, particularly considering 
statistical uncertainty.  
 
Correlations for the BIs are mostly negative 
(Tables 3 and 4). They tend to be larger in the 
southern regions, for the index most adjacent (in 
longitude), and also in winter. The peaks of −0.7 
seem typical of values in other studies. 
Substantial positive values occur in summer for 
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the north. Conceivably, these are ‘coincidental’ 
with both the northern rainfall and the wind 
anomalies (well to the south) being part of an 
ENSO teleconnection.  
 
For all the regions there is a negative correlation 
with the PID index. Except for SW it is 
substantial, both in the annual case and the 
seasons. (An exception is in summer, when the 
east-west gradient here seems less important 
than the variation in overall equatorial 
temperatures associated with ENSO.) In each 
case, the peak seasonal value is in spring, which 
also has the largest SD of PID. The average of 
the r values, in Table 6, is notably large, 
indicating the overall importance of this 
relationship. 
 
Turning to the model results, we again present 
only the averages in Table 6 (and not just the 
large values). The HLM relationship is stronger 
in Ref than in the obs, and the average bias is 
also largest for Ref, despite it having the best 
VAR result. Using the same colour criteria as for 
VAR, we rate both R1 and R2 as improved, with 
Yellow.  
 

Table 6 Teleconnection (TELE) between 
indices and rainfall from obs and models, 
using the correlation coefficient r (times 
100), including the bias. In each case the 
result is an average over the five seasons 
(including annual) and seven rainfall 
regions. For the HLM and BI cases, the 
values are the average of the magnitude of r. 
For BI, the average is over the EBI and 
WBI. The bias is calculated by averaging the 
absolute differences from the obs results.  

D
A

T
A

 

H
L

M
–P

pn
 a

bs
(r

)x
10

0 

H
L

M
-P

pn
  b

ia
s 

B
I–

Pp
n 

 a
bs

(r
) 

B
I–

Pp
n 

 b
ia

s 

PI
D

–P
pn

  r
 x

10
0 

PI
D

–P
pn

  b
ia

s 

obs 21 0.0 27 0.0 −42 0.0 
Ref 39 24 25 16 −25 19 
R1 22 14 29 16 −41 12 
R2 27 13 28 17 −16 32 

 
The two blocking indices also correlate rather 
modestly with rainfall overall, with similar 

averages in each model (Table 6). The model 
bias in r is also similar in each case. As a result 
each model is given Amber.  
 
The observed PID-rain relationship is most 
closely matched by the R1 model. The other 
two, including Ref, have both weaker 
correlations and a smaller SD of PID. They have 
larger overall bias in r, also. As a result the R2 is 
graded Red, while R1 scores Green. With the R1 
PID being also more variable, but not its rainfall, 
it could be argued that the models have a 
somewhat weaker Australian rainfall response to 
PID, per K of the index. 
 
Summary and Conclusions  
We have presented and applied objective tests 
for nine features of climatology, four for the 
variability of rainfall and its drivers, and three 
for the associated teleconnections. Figure 3 
shows summary charts for the analysis. The 
chart for the round 1 coupled model shown in 
Figure 3a, indicates a mostly negative 
comparison with the Reference model. Nine out 
of the 16 grades are Red. There is some 
improvement in TELE, at least. The R2 chart, 
Figure 3b, shows similar performance to R1. 

 (a) 

(b) 

Figure 3 Australian regional summary charts for 
models (a) R1, and (b) R2. 

Based on the charts, and the previous tables, it 
can be said that the round 2 models perform as 
well as round 1, for the climatology features in 
the Australian region. There is some 
improvement of the round 2 AMIP runs over the 
reference, but no clear change for the coupled 
model with the high resolution case better in 
some respects. 
 
The regional rainfall averages are key indicators 
of Australian climate variability and the Hadley 
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Centre coupled models provide quite realistic 
results overall. The PID index of equatorial SST 
relates strongly to the rainfall variability, in both 
obs and the models although there is apparently 
less realism in the round 2 model. The wind 
indices, sectoral HLM and east and west 
blocking indices provide an indication of the 
variability of the tropospheric zonal winds in the 
Australian sector. The models simulate a similar 
amount of variability overall and it relates well 
to the rainfall.  
 
Looking over both VAR and TELE features, the 
scores for round 1 and round 2 have not reached 
the impressive level set by the reference model. 
However, these are only initial results, and the 
data sets, particularly from the round 2 model, 
are rather limited. The grades and indeed the 
method are presented here for consideration, and 
should not be regarded as conclusive. 
 
To conclude, these tests assess model 
performance in the Australian region for a range 
of features, from climatology, variability and 
teleconnections. Substantial refinement of some 
of the tests is warranted, in particular via further 
quantification of error in the observational data 
sets and via usage of longer time series at finer 
temporal resolution (e.g., monthly). While the 
tests oversimplify some aspects and overlook 
some of the detail that may be important locally, 
they are practical enough to apply on a routine 
basis to new versions and other models, in 
particular ACCESS.  
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