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Predictive skill for El Nino-Southern Oscillation (ENSO) during 2000-2013 declined 8 

sharply relative to that achieved during 1980-19991 despite improvements of forecast 9 

systems2,3 and initial conditions4,5. This decline in skill coincides with a reduction of 10 

ENSO activity6 and a shift in Pacific climate to a stronger Walker circulation7,8,9, which 11 

has previously been associated with the recent pause in global-mean surface 12 

warming10,11.  We show using seasonal forecast sensitivity experiments that this shift in 13 

Pacific climate also drove the drop in ENSO predictive skill because the atmosphere-14 

ocean feedbacks that sustain ENSO are weakened. Weakened atmosphere-ocean 15 

coupling due to the ongoing strengthened Walker circulation helps explain the 16 

unpredictable behaviour of El Niño in 2014. The recent decadal decline in ENSO 17 

predictability is a sobering reminder that the long lead prediction achieved during 18 

1980-1999 might not be achievable in the future, although the robust impacts of the 19 

background Pacific climate variation on ENSO predictability indicate the potential for 20 

prediction of decadal variations in ENSO activity. However, anticipating future changes 21 

in ENSO predictability poses challenges because the causes and predictability of the 22 

change in background tropical Pacific climate, including any contribution of 23 

anthropogenic climate change, are as yet poorly quantified and simulated11,12,13. 24 

  ENSO causes major changes to rainfall, temperature, and severe weather in many 25 

parts of the world, with impacts on agricultural production, water resources, and 26 

ecosystems14. Fortunately, the occurrence of ENSO can be predicted up to 2-3 seasons in 27 

advance14, which helps in preparing for ENSO-driven impacts. Hence, unravelling the 28 

decline in ENSO predictive skill in the early 21st century, which has been reported across a 29 
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range of dynamical and statistical forecast systems1, is important to guide future development 1 

of prediction systems and to inform the level of climate predictability that might be achieved 2 

in the future.  This recent decline in ENSO prediction skill is demonstrated by comparing 3 

hindcast predictions (referred to as control forecasts) of surface temperature in the equatorial 4 

eastern Pacific during 2000-2013 and 1981-1999 using the Australian Bureau of 5 

Meteorology operational seasonal forecast system4 (Fig. 1d): the level of skill that was 6 

achievable to 9 months lead time in the late 20th century  is only be attained to 3 month lead 7 

in the early 21st century.  The further drop in skill when 2000-2013 is compared to 2000-8 

2010 indicates that the previously reported decline in skill for the early 2000’s is ongoing. 9 

This dramatic drop in forecast skill in the recent two decades coincides with a marked 10 

reduction in ENSO activity6 as indicated by reduced temperature variability in the Niño3 11 

region (Fig. 1a). The drop in forecast skill thus can be understood as resulting from decreased 12 

signal-to-noise: big events are easier to predict than weak events1,15,16. This impact of 13 

variability on predictive skill is demonstrated by a decrease in forecast skill when the two 14 

large El Niño episodes in 1982/83 and 1997/98 are excluded from the assessment of skill in 15 

the earlier epoch by comparing 1981-1999 to 1985-1995 (Fig. 1d).  16 

The reduction of ENSO activity, which can explain the drop in forecast skill in the 17 

early 21st century, has been postulated to result from a random reduction in ENSO events,17. 18 

However, the recharge-discharge mechanism that provides the long lead predictability of 19 

ENSO14 also weakened in the recent epoch18, which indicates that there have been changes in 20 

the primary mechanism causing ENSO that might have contributed to the decline in forecast 21 

skill. 22 

Concurrent with the decline in ENSO variability and predictive skill, the climate of the 23 

Pacific varied decadally as manifest by a swing in the Interdecadal Pacific Oscillation (IPO) 24 

to its cold phase after the strong El Niño 1997-987,8,8,10,11,17. The key changes in background 25 
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climate are captured by the epochal mean differences shown in Figs. 1a,b,c. The recent epoch 1 

is characterized by stronger trade winds in the central and western Pacific, a strengthened 2 

east-west surface temperature gradient, westward displaced equatorial upwelling, and a more 3 

steeply tilted thermocline6. The upwelling change reflects the local response to changes in 4 

surface stress, whereas the steepened thermocline stems from the integrated effect of 5 

increased trade winds across the basin. The increased trade winds are reflective of a stronger 6 

Walker Circulation97,8,9,10,11 with increased rainfall and lower surface pressure over a warmer 7 

western Pacific and Indian Oceans and reduced rainfall, higher pressure and stronger 8 

subsidence over a colder eastern Pacific (Supplementary Fig. 1). This shift in background 9 

climate is counter to that anticipated by anthropogenic climate change12 and has been 10 

associated with the recent hiatus in global warming10,11,  but here we will show it has also 11 

acted to reduce ENSO variability and predictability and so results in lower predictive skill. 12 

We demonstrate this with a forecast sensitivity experiment, whereby we re-run the 13 

seasonal hindcasts in the later epoch but initialized with the background climate from the 14 

earlier epoch, and vice versa for the hindcasts in the earlier epoch (see Methods). We then 15 

compare ENSO prediction between pairs of control and experiment hindcasts. The strength 16 

of this approach is that rather than assessing impacts of projected or idealized variations of 17 

background climate on ENSO evolution162,13,19,20, observed background changes are imposed 18 

onto observed initial anomalies using a forecast model whose past performance for predicting 19 

the observed ENSO is established4. Any detected changes in ENSO predictability thus should 20 

reflect impacts of the observed changes in background climate. This approach also removes 21 

the ambiguity of whether the enhanced predictability in the earlier epoch was simply due  to 22 

the random occurrence of stronger ENSO events then because by design we assess the impact 23 

of the mean state change on the events that did occur in each epoch.  24 
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Initializing the forecasts in the later epoch with the background climate from the earlier 1 

epoch results in increased ENSO amplitude (Fig. 2a) and predictability (Fig. 2b), and vice 2 

versa for the forecasts in the earlier epoch. The differences grow with lead time, and by 6 3 

months the changes in amplitude are comparable to the observed differences between the two 4 

epochs (compare Supplementary Figs. 4c,f to Fig. 1a). Predictability differences are 5 

comparable to the epochal differences in the control forecasts (Fig. 2b), with the biggest 6 

changes occurring for forecasts initialized in the first half of the year (Supplementary Fig. 5) 7 

when ENSO is most rapidly growing. Importantly, the initial mean state changes are largely 8 

maintained through the first few months of the experiment similar to the epochal differences 9 

in the control forecasts (Supplementary Figs. 2a-c), so we are confident that detected changes 10 

in ENSO behaviour stem from the imposed initial differences in background climate. 11 

The impact of the background climate change on individual El Nino and La Nina 12 

events is demonstrated by the scatter of the differences in predicted Niño3 index at 1 month 13 

lead versus the observed Niño3 index anomaly at the initial time (Figs. 3 c and d), recalling 14 

that the control and experiment forecasts are initialized with the same observed Nino3 15 

anomaly. Importantly, El Niños get warmer and La Niñas get colder in the presence of the 16 

background climate from the earlier epoch (and vice versa in response to background climate 17 

in the later epoch), confirming that the mechanisms causing ENSO are altered by the change 18 

in background climate. The slope of the regression in Figs. 3c,d, which has nearly identical 19 

magnitude but opposite sign in the two epochs,  is interpreted as the difference in growth rate 20 

of an ENSO anomaly in response to the change in background climate (see Methods) and has 21 

magnitude of about 15% of the typical ENSO growth rate. This  regression is also computed 22 

at every model grid point (Fig, 3 a,b) and shows that the difference in growth rate  has  23 

largest amplitude in the equatorial eastern Pacific where ENSO variability is strongest and 24 
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the pattern is similar to the observed epochal changes in variability (Fig. 1a) and predicted 1 

differences in amplitude (Supplementary Fig. 4).  2 

Positive feedbacks involving the atmosphere and ocean are fundamental to 3 

development of ENSO14,21: the ENSO ocean surface temperature anomaly drives rainfall and 4 

zonal wind variations that act to strengthen the ocean temperature anomaly21. The strength of 5 

these feedbacks depends on the background climate14. The difference (experiment minus 6 

control) heat budget in the upper ocean (Supplementary Information) reveals how these 7 

feedbacks respond to changes in the background climate (Supplementary Fig. 6). Reduced 8 

ENSO variability during the recent epoch results from a roughly equal contribution of 9 

weakened "thermocline feedback" (i.e., the growth of a temperature anomaly due to 10 

advection of thermocline perturbations by mean upwelling) because of reduced mean 11 

upwelling east of the dateline (Fig. 1c), and weakened "zonal advective feedback" (ie growth 12 

of temperature anomaly due to advection of the mean zonal SST gradient by anomalous 13 

zonal currents; Supplementary Fig. 6d) because of weaker generated zonal current anomalies 14 

in the central Pacific7,9. An increase of zonal advective feedback in the far western Pacific, 15 

due to the intensified surface temperature gradient in the recent epoch (Fig. 1a), is also 16 

detected (Supplementary Fig. 6c) and has been attributed to be the cause of the recent 17 

increase of surface temperature variability in the western Pacific7,9,20. 18 

Weakened zonal advective feedback in the central Pacific during the recent epoch 19 

stems from weakened atmosphere-ocean coupling7,9,20: based on observed data, the westerly 20 

(easterly) wind response to an  El Niño (La Niña) surface temperature anomaly is shifted 21 

west in the recent epoch (Supplementary Fig. 7), which results in a weaker ocean response to 22 

the east7,9. This change in the zonal wind response comes about because a) a surface 23 

temperature anomaly developing in the colder eastern Pacific during the recent epoch will 24 

produce a weaker and westward shifted rainfall response7,9,19,20 and b) stronger mean 25 
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subsidence in the eastern Pacific in the recent epoch due to the strengthened Walker 1 

circulation acts to suppress the rainfall/wind response to a surface temperature anomaly7,9.  2 

These findings shed light onto the challenges of predicting development of El Niño in 3 

early 2014, which stalled during boreal summer after strong development during spring22. 4 

Forecasts from initial conditions on 1 April 2014 (Fig. 4a) predicted continued development 5 

of  El Niño but underestimated the decay around July, which has been attributed to the lack 6 

of an accompanying sustained response in the atmosphere as embodied by a negative swing 7 

in the Southern Oscillation22. Forecasts from 1 May 2014 (Fig. 4b) well captured the demise 8 

in July but now predict near-neutral conditions by year’s end. In contrast, if these forecasts 9 

are remade using the background climate from the late 20th century, a much stronger, more 10 

predictable El Niño develops from 1 April, while little decay is predicted from 1 May, 11 

suggesting that the fickle nature of El Niño 2014 reflects weakened atmosphere-ocean 12 

coupling as a result of the ongoing shift in background climate. 13 

The robust impact of variations in background Pacific climate on ENSO activity and 14 

predictability suggest the potential for prediction of decadal variations in ENSO activity. 15 

However, we have not provided insight as to what caused the recent intensification of the 16 

Walker circulation. It might stem from natural, yet largely unpredictable, decadal variations 17 

of Pacific climate13,19,20,23, or it may be  a response to forced climate change such that the 18 

eastern Pacific warms more slowly than the other oceans24,25.  Furthermore, although a 19 

consensus is emerging about expected changes of ENSO impacts in a warming climate26, 20 

there is as yet little insight or as to how ENSO predictability might change because there is 21 

little agreement as to how ENSO activity might change12.  The recent shift in Pacific climate 22 

appears to be not well simulated with contemporary climate models11, suggesting model 23 

errors are limiting the capability to simulate and predict variations of Pacific climate that are 24 

relevant to future variations of ENSO activity. We suggest that our approach of evaluating 25 
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ensembles of short-lead seasonal predictions, initialized from observed states at multiple start 1 

times from different climate epochs could be an efficient manner to reveal the source of error 2 

in the representation of climate variations such as those discussed here, and so lead to 3 

improved climate models that are of more utility for predicting future climate. 4 

Methods 5 

Coupled Model Seasonal Hindcasts 6 

A 10-member ensemble of 9-month control hindcasts (re-forecasts) using the 7 

Australian Bureau of Meteorology seasonal prediction system POAMA24.c are initialized on 8 

the first of each month for January 1981 to December  2013 from observed atmosphere-9 

ocean states4. Ocean initial conditions are provided by the PEODAS reanalysis27. The quality 10 

of the PEODAS reanalyses is comparable to other operational ocean re-analyses28. Ensemble 11 

mean forecasts are obtained by averaging the 10 members. We refer to these hindcasts as the 12 

control forecasts. Prediction skill of ENSO using the control hindcasts is on par with other 13 

state-of-the-art coupled model seasonal forecast systems1,4.  14 

ENSO forecast skill is assessed using correlation of the Niño3 Index (ocean surface 15 

temperature averaged 5°N-5°S, 90°W-150°W), which captures the maximum surface 16 

temperature variability associated with ENSO. For assessment of the forecasts in 2014 we 17 

also use the Niño3.4 Index (5°N-5°S, 120°W-170°W). Forecasts are verified using the 18 

Reynolds OI-v2 surface temperature analyses29.  19 

Forecast Experiment 20 

We conduct a forecast experiment by swapping the mean states of the initial conditions 21 

defined over the 2 epochs (1985-1995) and (2000-2010). Note that we have excluded the two 22 

big El Niño events (1982/83 and 1997/98) from the definition of the mean state in the earlier 23 

epoch in order to not bias the results due to the occurrence of these big events, however there 24 

is little difference in the mean state or in the impact on the forecast experiment if these two 25 
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events are included in the definition of the earlier epoch mean.  The mean state changes in 1 

the initial conditions are applied to the full 3-dimensional atmosphere (u, v, T, moisture, 2 

surface pressure, soil temperature and moisture) and ocean (u, v, T, and salinity) fields. 3 

Theses mean state differences are nearly identical to those derived from 2000-2013 minus 4 

1981-1999 as depicted in Figs. 1a,b,c and Supplementary Fig. 1.  5 

Let Xc(0) represent an initial atmosphere-ocean state during the earlier epoch (1985-6 

1995). Let Yc(0) similarly describe an observed state during the later epoch (2000-2010). The 7 

subscript c, for control, indicates that observed initial states are used for the control forecasts. 8 

With an overbar representing the time average over the respective epoch and a prime 9 

indicating a deviation from that mean, the initial conditions for the control forecasts in the  10 

two epochs are 11 

Xc(0) = X′(0) + X�c(0) 

And    12 

         Yc(0) = Y′(0) + Y�c(0). 13 

 14 

 15 

The initial conditions in the experiments with the swapped background climates are 16 

then  17 

 

                                                 Xe(0) = X′(0) + Y�c(0) = Xc(0) + ∆ 18 

 19 

                                        Ye(0) = Y′(0) + X�c(0) = Yc(0) − ∆  20 

 21 

Here  ∆= Y�c − X�c, and noting that  X�e = Y�c and Y�e = X�c.     22 

After swapping the initial mean states, we rerun the forecasts for the two periods and 23 

examine the experiment minus control differences. We define the forecast anomalies relative 24 
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to the lead-time dependent climatology for that epoch, and we do this for control and 1 

experiment forecasts for each epoch separately. 2 

  3 

Predictability  4 

We assess prediction skill, which is the capability of the forecast system to predict 5 

observed events, by verifying forecasts against observations. We assess predictability, which 6 

is an inherent characteristic of the climate, using a perfect model assumption. Here we use 7 

the method of analysis of variance30, which assumes that the predictable fraction of the total 8 

variance of the ensemble is given by  9 

)( *
*

sprdensm

ensm
pred VarVar

VarVar
+

=  10 

where  11 

sprdensmensm Var
N

VarVar 1* −=
  12 

is a non-biased estimate of the variance of the ensemble mean. The variance of the 13 

ensemble spread Varsprd is computed using the deviation of each of the ten members about 14 

the ensemble mean. 6. 15 

Statistical Significance 16 

Significance of the difference in means is assessed using a standard t-test, the 17 

difference in standard deviations using an f-test, and the differences in correlation using a t-18 

test after applying Fischer's transform. Our null hypothesis is no difference.  For the observed 19 

behavior we use a 2-sided test, but use a one sided test for the experiment-control 20 

differences.  For the two 11-year epochs (1985-1995 and 2000-2010) there are 132 forecast 21 

start times. There are 228 forecast start times  for 1981-1999 and 168 for 2000-2013. 22 
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Figure 1 Epochal mean differences (2000-2013 minus 1981-1999). a: Surface temperature 6 

(shaded °C) and its monthly standard deviation (contour interval 0.2 °C with first contour at 7 

+/- 0.1, solid green for positive differences and dashed black for negative differences); b:  8 

temperature along equator (5°N-5°S) versus depth (shaded °C) with thermocline indicated by 9 

20°C isotherm for later epoch (black solid) and earlier epoch (green dashed); c: upwelling  10 

velocity averaged  0-90 m, (shaded, units 10-5 m s-1) and surface stress (maximum displayed 11 

vector 0.2 Nm-1).  d: prediction skill (correlation versus lead time in months) of the Niño3 12 

index from control hindcasts initialized every month during 2000-2010 (red solid curve), 13 

2000-2013 (red dashed curve), 1985-1995 (solid green curve) and 1981-1999 (dotted green 14 

curve).  The solid black box in a and c depicts the Niño3 Index region. Mean differences in 15 

a), b) and c) are shaded and vector differences are plotted where significant for (p<0.1. 16 
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Significant differences (p<0.1) in standard deviation in a) are hatched. Epochal differences in 1 

correlation in d) are significant (p<0.1) at every lead time. 2 

 3 
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 7 
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Figure 2 Changes in predicted Niño3 amplitude and predictability. a: Percentage change 10 

amplitude for the forecast experiment compared to the control for 2000-2010 period (red 11 

curve), for 1985-1995 period (solid green curve), and for 1981-1999 period (dashed-dot 12 

green curve); b: Differences of potential predictability (experiment minus control) for 2000-13 

2010 (red curve) and 1985-1995 (solid green curve). Blue-dash curve denotes the difference 14 

of potential predictability for control forecasts 2000-2010 minus 1985-1995.  Differences in 15 

amplitude and predictability are significant (p<0.1) for all lead times after month 1. 16 
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Figure 3 Experiment minus control differences in ENSO growth rate. Differences in 3 

growth rate of ENSO surface temperature anomalies computed by the regression of the 4 

difference in predicted surface temperature (experiment minus control) after 1 month onto 5 

the observed Nino3 anomaly at the initial time for a: 1985-1995 and b: 2000-2010. 6 

Differences in growth rate are shaded (unit C month-1) where significant (p<0.05, n=132).  7 

The scatter of the differences in predicted surface temperature in the Niño3 region versus the  8 

observed Nino3 anomaly at the initial time are shown for c: 1985-1995 and d: 2000-2010. 9 

The red lines in c and d are the least squares regressions onto the  Niño3 Index and the slope 10 

(growth rate) has unit °C mnth-1, The negative slope in c shows that El Niño and La Niña 11 

anomalies in the earlier epoch  both weaken in response to initializing with the mean state 12 

from the later epoch. The positive slope in d shows that El Niño and La Niña during the later 13 

epoch both strengthen in response to the background climate from the earlier epoch.  The fits 14 

(correlation) in c) and d)  are significant (p<0.001, n=132)..  The solid black box in (a) and 15 

(b) highlights the Niño3 region.  16 
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Figure 4 Predictions for El Niño 2014. Observed (dashed curve) and predicted Niño3.4 4 

Index (5°N-5°S, 120°W-170°W) initialized on a: 1 April 2014 and b: 1 May 2014. Blue 5 

curves are operational predictions initialized with observed states and red curves are 6 

experiment predictions initialized with the 1985-1995 background climate. To be consistent 7 

with the experimental protocol, observed and predicted anomalies are formed relative to their 8 

respective 2000-2010 climatologies. Hatching is the standard deviation of the 10 member 9 

ensemble about the ensemble mean and shows that the experiment prediction from 1 April 10 

has lower spread than the operational forecast so indicating higher predictability. 11 
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Supplementary Information 1 

Upper Ocean Heat Budget 2 

To reveal how the atmosphere-ocean coupled processes that influence the amplitude of 3 

ENSO are affected by the changes in background climate, we consider the mixed layer heat 4 

budget (averaged 0-90 m) along the equator (averaged 5°N-5°S). To good approximation the 5 

growth of an ENSO temperature anomaly is given by1 6 

 7 

∂T′
∂t
≈ −w� ∂T′

∂z
− u′∂T�/∂x  8 

Overbars denote epochal means and primes are perturbations from those means. T is 9 

the temperature averaged over the mixed layer of depth H = 90 m. W is the vertical velocity 10 

(upwelling) at base of mixed layer H and u is the zonal current averaged over depth H. The 11 

vertical temperature gradient is computed at depth H.  The first term on the right hand side is 12 

referred to as the thermocline and the second term is referred to as the zonal advective 13 

feedback.  We have neglected a) nonlinear terms, b) advection of the mean vertical 14 

temperature gradient by anomalous vertical velocity (the Ekman feedback term which is 15 

typically large only in the far eastern Pacific), c) advection of anomalous zonal temperature 16 

gradient by mean zonal currents, d) meridional advection, and e) surface heat fluxes and the 17 

residual terms, all of which appear to not contribute to differences in ENSO behaviour under 18 

investigation here.  19 

We form the difference heat budget1 for the initial month of the forecast (time 1), and 20 

use the fact that both the experiment and control forecasts start off from the same observed 21 

anomaly at time 0: 22 

Δ
∂T′

∂t
=

Te′(1) − Tc′(1)
Δt

= 

        − �Δw�(1) ∂Tc
′ (1)
∂z

+ we����(1)Δ∂T′(1)
∂z

� − �uc′ (1)Δ∂T�(1)
∂x

+ Δu′(1) ∂T
�e(1)
∂x

�    (1) 23 

 18 



         1 

The delta operator for means and perturbations is defined, for example, as 2 

 3 

Δw�(1) = we����(1) − wc����(1)  

 4 

and  

 5 

Δ
∂T′(1)
∂z

=
∂Te′(1)
∂z

−
∂Tc′(1)
∂z

 

 6 

The left hand side of (1) is the total difference in tendency in month 1 as a result of 7 

imposing the change in mean state at the initial time. The thermocline feedback (first set of 8 

brackets on the right hand side of (1)) is composed of the difference in mean vertical velocity 9 

acting on the perturbation vertical temperature gradient and the mean vertical velocity acting 10 

on the induced change in perturbation vertical temperature gradient. The zonal advective 11 

feedback (second set of brackets on right hand side of (1)) is composed of the anomalous 12 

zonal current acting on the difference in mean zonal temperature gradient, and the induced 13 

change in anomalous zonal current acting on the mean zonal gradient.  14 

To highlight how ENSO anomalies react to the imposed change in mean state, we form a 15 

composite difference heat budget by regressing all terms in (1) onto the normalized observed 16 

Niño3 anomaly at the initial forecast time, recognizing that both the control and experiment 17 

forecasts are initialized with the same anomalies. The regression of the first term in each 18 

bracket of (1) reveals the direct response due to the imposed change in the background 19 

climate, while the second term reveals the result of a change in the anomaly during the 20 

forecast due to the imposed change in background climate. 21 
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Supplementary Figures 1 

 2 

 3 

 4 

Supplementary Fig. 1: Epochal mean differences (2000-2013) minus (1981-1999) for a: 5 

CMAP rainfall37, and b: pressure vertical velocity at 600 hPa and c: sea level pressure from 6 

NCEP reanalyses33.  Significant difference are hatched (p<0.1). Data acquired from 7 

NOAA/ESRL Physical Sciences Division, Boulder Colorado http://www.esrl.noaa.gov/psd 8 
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 6 

Supplementary Figure 2: Difference in mean SST from control forecasts (2000-2010 minus 7 

1985-1995) at lead time a: 1, b: 3 and c: 6 months.  (d-f) As is (a-c) except for difference in 8 

standard deviation. Units are °C.  Significant differences (p<0.1) are hatched. 9 
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Supplementary Fig. 3: Percentage change in predicted amplitude of Niño3 Index in control 6 

forecasts 2000-2010 compared to 1985-1995 (solid green curve) and 2000-2013 compared to 7 

to 1981-1999 (dash green curve). Asterisks indicate the percentage change of observed 8 

Niño3 amplitude for 2000-2010 compared to 1985-1995 (bold asterisk) and 2000-2013 9 

compared to 1981-1999 (light asterisk). Observed and forecast difference in amplitude are all 10 

significant (p<0.1, n=132) 11 
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 6 

Supplementary Fig. 4: Differences in standard deviation of SST (experiment minus control) 7 

for (left) 1985-1995, and (right) 2000-2010 for lead times 1 monht (a,d), 3 month (b,e) and 6 8 

months (c,f).   . Significant differences (p<0.1, n=132) are hatched. 9 
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Supplementary Fig. 5: Differences in potential predictability (explained variance) of Niño3 6 

Index for a: control forecasts 2000-2010 minus 1981-1999; b: experiment minus control 7 

forecasts for 1981-1999 and c: experiment minus control forecasts for 2000-2010. Difference 8 

in predictability is shown as a function of forecast start month (y-axis) and lead time (x axis). 9 

Dotted sloping lines indicate a constant verification month but at varying lead time. 10 
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Supplementary Fig. 6: Differences in predicted upper ocean temperature tendency 4 

(experiment minus control) at month 1 averaged in latitude (5°N-5°S) and over depth (0-90 5 

m). a: Differences in total temperature tendency (solid curves) and tendency approximated 6 

by the sum of the three components shown in panels (b,c,d) (dot-dashed curves); b: 7 

Difference in thermocline feedback tendency due to mean change in background upwelling; 8 

c: Difference in zonal advective tendency due to mean change in background zonal 9 

temperature gradient; and d: Difference in zonal advective tendency due to the induced 10 

change in zonal current anomalies during forecast. The tendency differences (experiment 11 

minus control) are computed as the respective tendency differences from month 1 of the 12 

experiment and control forecasts regressed onto the observed normalized Niño3 Index 13 

anomaly at the initial time. Scale for tendency differences has units °C mnth-1. Red curves 14 

are experiment minus control forecasts for 2000-2010 and green curves for 1985-1995. 15 
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Supplementary Fig. 7: Regression of normalized Niño3 index onto zonal surface wind 6 

anomalies (5°N-5°S) a: for observations, and b: for control (solid curves) and experiment 7 

(dot-dash curves) forecasts at lead time 1 month. The red curves denote 2000-2010 period 8 

and green curves denote 1985-1995 period. Curves are only plotted where regression is 9 

significant (p<0.1). 10 
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