The Economic Value Of Weather Forecasts

Jeff Lazo Societal Impacts Program NCAR - RAP/ESIG

International Verification Methods Workshop September 17, 2004

Economic Value of Weather Forecasts

		Forecast	
		Frost	No Frost
Action	Protect	-C (lost cost)	-C (lost cost)
	Don't Protect	-L (lost crop)	0

Nelson and Winter QJE

Objectives

- Ensure that "economic value" is valid economics
- Look at broader approach to economic valuation

Outline

- Economics and neoclassical value theory
- Risk and uncertainty
- Value of information
- Public goods
- Valuation methods

Economics

- "Study of the allocation of scarce resources to satisfy unlimited wants"
 - scarce resources
 - unlimited wants
 - allocation
- Why Econ 101 (Econ 601)?

Neoclassical Value Theory

- Economic agents
 - Consumers
 - Producers
 - Government
- Assumptions
 - 1. People have rational preferences
 - 2. Individuals maximize utility
 - 3. Firms maximize profits
 - 4. Agents act independently using full *information*
- Neoclassical Theory includes or extends to
 - Competitive equilibrium
 - Social welfare theory
 - Benefit-cost analysis

Consumer Utility Theory

$$\left| U = U\left(X_1, X_2, w\right) \right|$$

Utility is a function of consumption of two commodities: X_1 , X_2 .

Utility is also dependent on the weather, w.

"Indifference Curve"

Budget Constraint

$$Y - PX_1 - PX_2 \ge 0$$

Individual constrained by

(1) income: Y

(2) prices: P_1 , P_2

Constrained Utility Maximization

Chooses X₁ and X₂

- subject to prices
- subject to income
- to reach the highest level of utility

Solution to Utility Maximization Problem

$$Max L_{X_1,X_2} = U(X_1, X_2, w) + \lambda(Y - PX_1 - PX_2)$$

$$\frac{\partial L}{\partial X_1} = \frac{\partial U}{\partial X_1} - \lambda P_1 \equiv 0$$

$$\frac{\partial L}{\partial X_2} = \frac{\partial U}{\partial X_2} - \lambda P_2 \equiv 0$$

$$\frac{\partial L}{\partial \lambda} = Y - PX_1 - PX_2 \equiv 0$$

$$\frac{\partial U}{\partial X_1} / \frac{\partial U}{\partial X_2} = P_1 / P_2$$

Economics of Production

- Profit maximization
 - Revenues minus costs
- Production constraint
 - Technology
 - Wages and input price
- Subjective decision making
- How does avoided costs relate to Economic Value?
 - Translates to increased income (Y)

Value of Increased Income

$$Max_{X_1,X_2} = U(X_1,X_2) + \lambda(Y - PX_1 - PX_2)$$

$$\frac{\partial L}{\partial Y} = \lambda$$

Lessons Learned So Far

- Neoclassical value theory asserts that economic value is determined by consumers' marginal utility
- "Value" is based on individuals' preferences
 - Value is <u>subjective</u>
 - Value does not mean "dollars"
 - Dollars serve only as a unit of measurement
 - Value does mean "utility"
- Prices convey information
 - To "consumers" for making decisions
 - To "observers" about relative preferences
- Cost savings translates to "Income" and thus "Value"

Where's the weather?

Weather and State Dependent Utility

$$U = U\left(X_1, X_2, w\right)$$

Utility is dependent on the weather, w.

Weather w_2 favors activity that uses X_2

Have to give up a lot of X₁ to get some more X₂ to keep utility constant

Weather and State Dependent Utility

Weather w_1 favors activity that uses X_1

Have to give up a lot of X_2 to get some more X_1 to keep utility constant

How to choose when unknown whether weather is w_1 or w_2 ?

Risk and Uncertainty

Three approaches to risk and uncertainty:

- 1. Games of chance
- 2. Behavioral uncertainty
- 3. Incomplete information
 - Prices
 - Income
 - Commodity quality
 - Outcome probabilities?

How to formulate "weather uncertainty" and forecast information?

Expected Utility (EU) Theory

$$Max \underbrace{EU}_{X_1, X_2} = \sum_{i=1}^{n} \mathbf{p_i} \left[U\left(X_1, X_2, \mathbf{w_i}\right) \right]$$

Assuming two states of world: $p_1 + p_2 = 1$

$$Max EU_{X_1,X_2} = p_1 [U(X_1, X_2, w_1)] + (1-p_1)[U(X_1, X_2, w_2)]$$

Being explicit about the income constraint:

$$\begin{aligned} Max \ L_{X_{1},X_{2}} &= p_{1} \Big[U \left(X_{1}, X_{2}, w_{1} \right) + \lambda (Y - PX_{1} - PX_{2}) \Big] + \\ & \left(1 - p_{1} \right) \Big[U \left(X_{1}, X_{2}, w_{2} \right) + \lambda (Y - PX_{1} - PX_{2}) \Big] = \\ p_{1} \Big[U \left(X_{1}, X_{2}, w_{1} \right) \Big] + \left(1 - p_{1} \right) \Big[U \left(X_{1}, X_{2}, w_{2} \right) \Big] + \lambda (Y - PX_{1} - PX_{2}) \end{aligned}$$

income constraint not affected by risk or uncertainty

Expected Utility (EU) Theory

$$\begin{aligned} Max \ L_{X_1,X_2} &= p_1 \Big[U \left(X_1, X_2, w_1 \right) + \lambda (Y \left\{ w_1 \right\} - P \left\{ w_1 \right\} X_1 - P \left\{ w_1 \right\} X_2) \Big] + \\ & \left(1 - p_1 \right) \Big[U \left(X_1, X_2, w_2 \right) + \lambda (Y \left\{ w_2 \right\} - P \left\{ w_2 \right\} X_1 - P \left\{ w_2 \right\} X_2) \Big] \end{aligned}$$

Expected Utility and Forecast Information

Subjective probability values p are a function of forecast, f.

$$p = p(f)$$

$$Max EU_{X_1,X_2} = \sum_{i=1}^{n} p_i(f) [U(X_1,X_2,w_i)]$$

$$p = p(f \sim \{\overline{f}, \sigma, ..., ...\})$$

$$Max \underbrace{EU}_{X_1, X_2} = \sum_{i=1}^{n} p \left(f \sim \left\{ \overline{f}, \sigma, \dots, \dots \right\} \right) \left[U \left(X_1, X_2, w_i \right) \right]$$

Value of Information

$$Max \underbrace{EU}_{X_1, X_2} = \sum_{i=1}^{n} p \Big(f \sim \{ \overline{f}, \sigma, ..., ... \} \Big) \Big[U(X_1, X_2, w_i) \Big]$$
$$p = p \Big(f \sim \{ \overline{f}, \sigma, skew, kurtosis \} \Big)$$

- "Improving" forecast means:
 - improving some measure the distribution of the forecast
 - Improving how forecast information translates to "p"
 - i.e., education and communication
- Forecast has value if it increases Expected Utility
 - this depends on how f relates to p
 - does not require a behavioral change

Public Goods

What is the price (i.e., value) of weather forecasts?

Weather forecast characteristics

- Non-rival
- Non-exclusive

Problems of public goods

- No observable price information
- No provision by private markets

Weather forecasts as "quasi-public goods"?

Valuation Methods

Market Methods

how much is the information bought and sold for

Prescriptive Models

"optimal" decision making by an economic agent

Non-Market Methods

- Indirect
 - Hedonic pricing
 - Value of statistical life
- Direct
 - Willingness-to-pay (WTP) studies

Valuation Methods

Value of Statistical Life (VSL)

- 1,000,000 people each willing to pay \$50 a year for a program to reduce the chance of death by 1 in 100,000 per year (say from 20 in 100,000 to 19 in 100,000 each year)
- Means that the group is WTP \$50,000,000 to prevent 10 deaths
- VSL = \$50,000,000/10 deaths = \$5,000,000

Valuation Methods

Non-Market Methods

- Direct
 - Willingness-to-pay (WTP)
 - Value for improvements not yet realized

$$U = U(X_1, X_2, w) \Rightarrow U = V(Y, P, w)$$

$$U^1 = V\left(Y^1, P^1, w_1\right)$$

$$U^1 = V(Y^1, P^1, w_1) = V(Y^1 - WTP, P^1, w_2)$$

 $w_2 \succ w_1$ where \succ implies "preferred"

Making Connections

Weather **Observations Forecasts** Communicate Perceive Value

Integrate social science research on weather forecasting

- Risk communication
- Psychology
- Sociology

- Risk perception
- Anthropology
- Geography

Conclusion

- Economic value means "utility"
- How does "improved" forecast accuracy relate to value?
 - depends on what "improved forecast accuracy" means
 - depends on the utility function
- Economics can add to understanding complex relationships between
 - weather events
 - weather forecasts
 - users and values

