NWS Gridded Marine Verification--
Derivation of ‘True’ Wind/Wave Fields
at NDFD Grids Using A Geostatistical Approach

Matthew Jin
RS Information System- NOAA/NWS
Silver Spring, Maryland
Matthew.jin@noaa.gov
Sept 16, 2004
Outline

- NWS National Digital Forecast Database (NDFD) marine forecast
- NWS gridded marine verification
- QuikSCAT wind data
- Derivation of truth via a geostatistical approach of Kriging using multiple sources of observations
- Future work
NWS NDFD Marine Forecast

• 10m level wind speed and direction, significant wave height
• Grid sectors: US CONUS, Guam, Alaska*, Puerto Rico, Guam, and Hawaii
• Spatial resolution at 5km
• Temporal resolution: 3 hours for days 1-3 and 6 hours for days 4-7 for wind; 12 hours for days 1-5 for wave
• All products are currently in experimental stage and are in GRIB2 format (with some soon to be operational)

* Experimental gridded forecast not available until 2005
NWS Gridded Marine Verification

• Goal

 – to develop a stat-on-demand, web-based, and database-driven gridded marine verification system

 – To help filed forecasters identify strength and weaknesses in forecast skills

 – To assist managers to identify strengths and weaknesses in marine services
NWS Gridded Marine Verification (cont’d)

- What to verify
 - **NDFD forecasts of wind speed, wind direction, and significant wave height at grids (for desired cycles and projections)**
 - **Wind/wave guidance/model forecasts: interpolated to grids (through bilinear interpolation in 2D x-y directions)**
 - Wind models: GFS, NGM, ETA
 - Wave models: AKW, WNA, NWW3, NAH
NWS Gridded Marine Verification (cont’d)

• How
 – Wind speed, wind direction and wave height are classified into multiple categories
 – A contingency table is computed for each truth – forecast/guidance pair
 – Verification statistics/skill scores are computed based on contingency table
 – Verification statistics compiled and summarized for marine zones, regions, and WFO’s area of responsibility
 – Everything implemented so that the system is database-driven and web-based
NWS Gridded Marine Verification (cont’d)

• Truth?
 – No observations are available at desired forecast times at every grid point
 – Has to be estimated from observations collected at locations in the neighborhood of the NDFD grids.
NWS Gridded Marine Verification (cont’d)

• Available nearby observations
 – *Fixed buoys/C-MANs data*
 – *Drift buoy, ship data*
 – *Quick Scatterometer Satellite (QuikSCAT) wind data*
QuikSCAT Wind Data

- SeaWinds scatterometer launched in June 1999
- Microwave radar sensors to measure wind indirectly from sea surface roughness
- Rotating dish antenna; one swath, 1800 km wide
- 1.1 million measurements a day; maps 90% of World’s oceans every day
- Found to have an impact on the issuance of Marine Wind Warnings by Ocean Prediction Center (OPC).
- Original measurements have been interpolated by OPC to grids of resolution 1/3 degree by 1/3 degree
- Supplement data collected by buoys/C-MANs, especially at areas where such buoy/C-MAN stations are absent
Derivation of Truth Estimation via Geostatistical Approach of Kriging

• To make maximum use of all kinds of data we adopt Geostatistical approach of Kriging

• Key ideas

 – Variable of interest is modeled as spatially and temporally random variable whose variability is characterized by its variogram

 – Estimate of the variable at any specified location and time is based on a linearly weighted average of the variable at neighborhood locations where observations are available.

 – The weights are determined by minimizing the estimation error variance

 – Depending on whether the trend is known a prior, whether the estimation is point-wise or block-wise, whether the variable is a continuous or a categorical one, and whether a trend is present, kriging is further classified into simple, ordinary, block, indicator, and universal kriging
Truth Estimation via Geostatistical Approach of Kriging (cont’d)

• Desirable properties
 – *It is the best linear unbiased estimator*
 – *At a location where observation is available, the kriging estimate reduces to the observed or sample value (in the absence of any observation error)*
 – *Kriging smoothes estimates based on the proportion of total variability accounted for by random noise and/or measurement errors.*
 – *Clustered points that are highly correlated in space and time carry less weight than isolated ones at the same distance*
 – *If observations are more highly correlated in a particular direction/dimension, kriging weights will be greater for observations in that direction/dimension.*
 – *Kriging will yield estimation error variance as well as the estimate itself*
Truth Estimation via Geostatistical Approach of Kriging (cont’d)

• Modeling of different types of observations
 – Presence of observation bias as well as errors are assumed
 – Two different measurement instruments (e.g., buoy and satellite) are assumed to have distinct biases and errors
Truth Estimation via Geostatistical Approach of Kriging (cont’d)

• **Computational effort**

 – *Number of potential NDFD grid sectors: 5*

 – *Each NDFD sector consists of 20,000-50,000 grid points for which estimation of truth is required for all forecast times*

 – *For each grid point, an kriging estimate requires the solution of a kriging system of equations (whose rank equals to the number of observations in the neighborhood of the grid)*
Future Investigation

• Upon availability of more gridded satellite wind data, evaluate performance of the geostatistical approach via cross-validation

• To implementation parallel computation

Acknowledgements

William Lerner, Charles Kluepfel, Richard May, Jamie Vera of NOAA/NWS