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INTRODUCTION

Method demonstrated for thinning a network design for verification of forecasts of
cloud ceiling height and visibility for use by the general aviation (GA) community.

Data: Meteorological Aeronautical Report (METAR) data from surface stations.

Why thin? : Placement of METAR stations may bias verification analyses. For ex-
ample, areas with many METAR stations may be rewarded or penalized more than
areas with fewer METAR stations.
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DATA

Data used here are hourly data collected from 1590 METAR stations from October
1, 2002 through October 31, 2003.
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DATA

Both datasets are theoretically continuous, but neitherreally is.
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Flight Rules

Discreteness in the data suggests using categories. For example, flight rules: Low In-
strument Flight Rules (LIFR), Instrument Flight Rules (IFR), Marginal Visual Flight
Rules (MVFR) and Visual Flight Rules (VFR).

Flight rules Cloud ceiling height Visibility
Poor Visibility LIFR < 500 feet < 1 mile

IFR < 1000 feet < 3 miles
Clear Skies MVFR < 3000 feet < 5 miles

VFR > 3000 feet > 5 miles
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Strategy

1. Inspect the relationship of distance against (pair-wise) correlations.

2. Based on results of Step 1, use a coverage design algorithm to find optimal de-
signs of various sizes (nested). (see Nychka (1998) or Johnson (1990))

3. Use a percent agreement score (PA) to determine a reasonable design size.
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Step 1: Inspecting Correlations

From a plot of distance against pair-wise correlations, much information is gleaned.

• Are the data correlated at all?

• Are most stations correlated, but a few not correlated (or less correlated)?

• Is there structure to the correlations? If so, can a correlation function,ρ(h), be
fit to the data?

• If a correlation function can be fit,1− ρ(h) can be used as a dissimilarity metric
in a coverage design.
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Example A: Box plots of distance against visibility correlations for New England
(Oct. 1, 2002 through Dec. 22, 2002).
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The same as the previous, but for ceiling height.
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Example B: New England (March 22, 2003 through June 22, 2003) visibility.
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Example B: Cloud ceiling height.
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Example C: N. California (June 22, 2003 through Sep. 22, 2003).
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Step 2: Coverage Designs

For a given set of candidate points,C, denote the set of design points asD where
D ⊂ C.
A distance metric between any pointx and a particular design,D, is

dp(x, D) =

[∑
x′∈D

φp(x,x′)

]1/p

,

wherep < 0 is a parameter, andφ is a distance or dissimilarity metric.

Note that the above is an average of “distances” between a given pointx ∈ C and
each pointx′ ∈ D.
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Step 2: Coverage Designs

An overall cover criterion is anLq average of cover points in the design region.
Namely, [∑

x∈C

dp(x, D)q

]1/q

(1)

whereq > 0 is a parameter anddp(x, D) is as above.
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Step 2: Coverage Designs

• Large negative values ofp tend to yield designs that are more spread out.

• The coverage criterion (1) involves an averaging over the coverage surface. Av-
erages of the prediction variance should correspond to coverage; especially if
φ(·) = ρ(·).

• For q = 1 the average value of the surface is restored.

• Whenq = ∞ the coverage criterion is the maximum value of the surface.

• As q −→∞ andp −→ −∞ the result gives a classic minimax design.
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Step 2: Coverage Designs

• Criterion (1) is minimized over several space-filling designs of a given size to
obtain a “coverage design” from among the class of space-filling designs.

• Coverage designs are generated using a “swapping” algorithm.

• It is possible to fix points in the design.

• Generally, the initial design is chosen at random, and starting design may affect
outcome.

• Criterion (1) is guaranteed to converge (Nychka (1998) or Johnson (1990)).

• Here, the functioncover.design from the R (http://www.R-project.org )
packagefields (Nychka et al.) is used to perform the algorithm.
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Step 3: Percent Agreement score (PA)

A coverage design gives a “best” design for a given size. It does not say anything
about the “best” design size. One reasonable approach to finding the “best” size for
this particular problem is to look at how the percent agreement (PA) score is affected
for different design sizes.
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Step 3: Percent Agreement score (PA)

For only 2 stations:
Event No event Total

Event a b a + b

No event c d c + d

a + c b + d a + b + c + d

PA =
a + d

a + b + c + d
· 100
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Step 3: Percent Agreement (PA)

• For each design, compute the percent agreement between stations inD and all
stations inC (using nearest neighbors).

• Find the smallest design size that has about the same distribution of PA as all
greater designs.
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Example A: New England Oct. 1 through Dec. 22, 2002. Visibility (Ceiling very
similar).
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Example B: New England March 22, 2003 through June 22, 2003.
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Example C: N. California subregion June 22, 2002 through Sep. 22, 2003 visibil-
ity.
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Results

Example A: 10 station subset for New England Oct. 1, 2002 through Dec. 22, 2002.
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Example B: 81 station subset for New England March 22, 2003 through June 22,
2003.
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Example C: 37 station subset for N. California June 22, 2003 through Sep. 22,
2003.
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Verification Comparison: Past results

Verification of the National C and V algorithm from 1-14 January 2003 on the 20
and 48 stations.

stations 48 20
POD 66% 68%
FAR 10% 8%
Bias 1 1

• The POD and FAR both improved slightly (by 2%) when using fewer stations
(possiblydue to removing many stations in the SFO bay area; a region where
making correct C and V forecasts is likely very difficult).

• Poor forecasts in this area are punished less using the 20 stations than with the
48 stations.

• Verification statistics are still quite close, and the bias is unchanged indicating
that nothing was likely lost by using 20 stations instead of 48.
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Verification Comparison: Past results

Results for January 2003 on a subset of 56 stations (chosen using this strategy) in
New England region.

104 stations 56 stations
POD 0.87 0.87
FAR 0.10 0.10
Bias 0.97 0.97

Results are rounded, but clearly very close to being the same.
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Ongoing Work

• Separate day and night.

• Do each month separately for each region.

• Do the analysis for more subregions.
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