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The problem of verifying 
convective precipitation forecasts

• Thunderstorms produce precipitation patterns with 
significant small-scale detail

• High-resolution numerical models are increasingly 
able to produce similar small-scale detail

But….
• Detailed model fields often have small phase errors

compared to observations

• Traditional skill scores are often worse for detailed 
models even though they produce more realistic 
forecasts



The present situation

• Realize there is no single perfect verification score

• Active research on many new verification approaches
- Spatial structures measures
- Object oriented techniques
- Scale dependent techniques

However….
• Operational precipitation verification still frequently 

relies upon ETS, bias

• Models with different grid resolution and different 
resolvable-scales are still being compared



Goals of this Study
• Systematically document the scale-sensitivities 

known to exist for traditional skill scores by…

- Comparing equitable threat and bias scores
for models verified on different resolution grids

- Examining spectra from various models and 
observations on different resolution grids

It is not our purpose to:
• Develop a “new” verification skill score
• Decide how much small-scale detail is acceptable 

in mesoscale models



Key Questions 
• How is Equitable Threat Score affected by the 

amount of small-scale detail in the:
- forecast field?
- verification field?

• How does model bias affect this scale dependency?

Specifically….
• Are ETS values from models with different grid

spacing and different biases directly comparable?

• Does a smoother precipitation field yield a higher   
ETS value when compared with a highly
detailed verification field? 



Threat Score and Bias

• Threat Score =  Hits  /  (Hits + Misses + False Alarms)

Highlights events that actually occur, rather than those which do not

ETS is the threat score corrected for a chance forecast…

ETS =  (Hits – chance)  /  (Hits + Misses + False Alarms - chance)

• Bias = Area Forecast  /  Area Observed

No dependence upon “hits!”



3 Years of AVN (GFS) Verification Statistics 
6hr vs. 12hr Accumulation
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Smoothing of forecast fields over time 
QPF verification statistics computed over a longer 
accumulation period are shown to be better than 
those computed over a shorter period

FSL/RTVS Precipitation Verification



OBS

Forecast: BForecast: A

MAE:   0.157,   0.159

RMSE:  0.254,   0.309

Bias:  0.980,   0.980

CSI:   0.214,   0.161

ETS:   0.170,   0.102

A B

Spatial smoothing of forecast fields also has been 
shown to result in higher skill scores…

From Mike Baldwin of NOAA/NWS/SPC OU/CIMMS



Double penalty

When forecast models resolve very small precipitation detail, they often suffer 
a double penalty when verified categorically on the observational grid.

In this example, the 10 km forecast is penalized twice: once for not placing rain in 
the correct place (a miss), and once for placing rain in the wrong place (a false alarm).    

The 20 km forecast receives one hit and 3 false alarms, giving a higher ETS and bias. 

20 km forecast 10 km observational grid10 km forecast

M

FA FA

H

FA

FA

ETS10km =  -0.03           ETS20km =   0.20



Model Native (km) Coarsened (km)

RUC10 10 20 40 80

RUC20 20 20 40 80

ETA12 12 20 40 80

LMM12 12 20 40 80

Stage4 verif 4 (10) 20 40 80

This study is not a model bake off!

Experimental RUC 10-km (GD ensemble convection)
Operational RUC 20-km (GD ensemble convection)
Operational Eta 12-km (BMJ convection)
Experimental LAPS MM5 12-km (KF convection)

IHOP Real-time Modeling



Observations:  NCEP Stage IV Analysis

Mosaic of regional hourly and 6-hourly multi-sensor 
(radar+gauges) precipitation analysis at 4km. 
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• NCEP “neighbor budget”
(Baldwin 2000) used for all 
grid remappings

• Preserves total precip, 
minimizes edge smearing

• Less impact on skill scores 
than bilinear interp (Accadia
et al., 2003)

• Sub-divide each target grid-box into 25 sub-boxes (5x5)
• Nearest neighbor from input grid to each sub-box point
• Target values = simple average of 25 sub-box values 

Grid Transformations

target
point

input
points
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Expt. 1 Results: Upscale model and verification
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Expt. 1: ETS % change relative to native grid
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Expt. 1 Results: Upscale model and verification

LMM12 (near misses) improves more with upscaling than 
ETA12  (very smooth)



Summary of Expt. 1 Results

• ETS improves for all models and most thresholds as 
forecast and verification fields are upscaled

• For detailed forecasts, a precipitation threshold cutoff
exists above which forecast degradation occurs 
with upscaling

• The cutoff threshold shifts to lower amounts with 
further upscaling, and is correlated with bias ~0.5

• For smooth forecasts, less ETS improvement with 
upscaling occurs and no cutoff threshold exists

How do these results change, when only the 
forecast is smoothed? 
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Expt. 2 (Smooth model only): ETS % change



Summary of Expt. 2 Results
• Even when verified against a fixed detailed field,

smoothing the forecast improves the ETS score

• Bias decreases for the highest thresholds and 
increases for the lowest thresholds

• Upper cutoff threshold (bias ~ 0.5) remains, ETS falls 
for low thresholds as bias exceeds 2.0 for 
smoothed fields

• For smooth forecasts, very little change in ETS       
(no changes for either forecast or observations) 

For ETS, smoother is better (either forecast 
or observations), with current model skill*
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What controls ETS and bias changes?
• As forecast and observations are smoothed,           

local maxima are reduced, and larger precipitation 
amounts spread to nearby points

• Result is an overall cascade of precipitation from 
higher thresholds to lower thresholds

• ETS: Small-scale near misses suddenly become hits!

• Bias: Increase in coverage for low thresholds,
decrease in coverage for high thresholds 

Precipitation cascade is largely controlled by:
-- Small scale detail (spectra)
-- Total precipitation volume



• ETS rewards 
gridpoint matches

• Details must be in 
the correct location

• Models are not 
that good yet!

* What if model 
skill was better ?

“PERFECT”
fcst:  ETS gets

WORSE
with

smoothing

“REAL”
Fcst:  ETS gets

BETTER
with

smoothing 0.25” threshold

Slope gives measure of 
small-scale detail in verif

ETS for coarsened
“perfect” forecast 
gives upper-bound 
on ETS for a given 
amount of detail

dry model

smooth model



Conclusions

• Forecasts on different native grids are not directly
comparable (coarser grid has the advantage)

• Forecasts with different degrees of small-scale detail,
even if on the same grid, are not comparable 
(smoother field has the advantage)

ETS comparisons should only be made for 
precipitation fields with similar spectra and bias,
compared on matched grid resolutions (using 
the same verification field)



Better verification measures?
• Spatial structure measures
• Object Oriented measures
• Scale dependent techniques

There is no:
- one-size fits all verification score
- optimal amount of model detail

Highly detailed forecasts often better duplicate 
observed spatial and temporal structures, 
contain more information for use in the model
post-processing



That’s all folks!


