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Scale separation in 
verification measures

Talk outline:
! Motivations
! Review of some of the key approaches

1. Briggs and Levine (1997)
2. Casati et al. (2004)
3. Denis et al. (2003), De Elia et al. (2001)
4. Zepeda-Arce et al. (2000), Harris et al. (2001), 

Tustison et al. (2003)
! Discussion
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Motivations

1. Different 
scale 
phenomena, 
different 
physics,
different 
aspects of 
the model

2. Compare 
different 
spatial scale  
resolutions



Briggs and Levine (1997)
“Wavelets and field forecast verification” 
Mon. Wea. Rev., vol. 125, pp. 1329-1341

Verification of different spatial scale components obtained from
a 2D wavelet decomposition of the forecast and analysis field

1. 2D discrete wavelet decomposition of the forecast and 
analysis fields 

2. Noise removal by wavelet coefficient thresholding
3. Reconstruction of each spatial scale component. 
4. Verification of each spatial scale component by:

• RMSE, corr. coeff., energy (variance) ratio
• % MSE, % corr. coeff. (wavelet 

components orthogonality)



ECMWF Analysis 36-h Forecast (CCM-2)

500 mb geop. Height, 9 Dec 1992, 12:00 UTC, over N. America
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Casati, Ross, Stephenson (2004)  
”A new intensity-scale approach for the verification of spatial 

precipitation forecasts” Met. App., vol. 11, pp. 141-154

Evaluate the forecast skill as a function of the preci-
pitation intensity and the spatial scale of the error
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Wavelet decomposition of 
the binary error
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Intensity-scale MSE decomposition
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MSE skill score
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MSEu versus SSu

SSu takes into account the base rate ε
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Binary Rec.ForecastBinary Analysis Overlapping
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GCM (T32~600km)

Denis, Laprise, Caya (2003)
“Sensitivity of a regional climate model to the resolution of the lateral 

boundary conditions”, Climate Dynamics, vol. 20, pp. 107-126

GCM GCM

RCM

RCM driven by the GCM (45km)
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Aims:
• test ability of RCM to (re)generate small-scale features
• test sensitivity to different resolution lateral boundary condition



Experiment set up

RCM on large domain at high resolution Big Brother

BB filtered to 
GCM resolution
LBC at different 

resolution

RCM on small 
domain at high 
resolution

Little Brother

Verify Little Brother vs Big Brother

(on small domain at high resolution)



500-2000 km wavelength

wavelength>500 km

wavelength<500 km

original field

Discrete Cosine Transform filtering of a 925-hPa specific humidity field



Taylor diagram for precipitation
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De Elia, Laprise, Denis (2001)
“Forecasting skill limits of Nested Limed Area Models: A perfect-model 

approach”, Mon. Wea. Rev., vol. 130, pp. 2006-2023
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Zepeda-Arce et al. (2000)
“Space-time rainfall organization and its role in validating quantitative 

precipitation forecasts” JGR vol. 105 (D8) pp. 10,129-10,146

1. TS on different scales
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• Assess ability of reproducing multi-scale spatial 
structure and space-time dynamics of ppn fields

• Different scales are obtained by spatial averaging



3.   Scale-to-scale variability: 

ξL =  fluctuation 
on scale L      

σξ,L=LH

4.  Spatio-temporal organization:

∆lnΙ(t,L) constant, 

then t=Lz
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Harris et al. (2001)
“Multiscale statistical properties of a high-resolution precipitation 

forecast” J. of Hydromet., Vol 2, pp. 406-418

1. Fourier analysis

2. Structure function

3. Moment-scale analysis

1. variability

2. Smoothness, 
spatial correlation

3. Intermittency 
sparseness + peaks



Tustison et al. (2003)
“Scale Recursive Estimation (SRE) for multisensor QPF 

verification: a preliminary assessment” JGR vol. 108 (D8)

MODEL 
λ=1

RADAR 
λ=2

RAIN 
GAUGES  λ=3

SATELLITE 
λ=0

COARSE TO FINE 
X(λ) = A(λ) X(λ-1) + B(λ) W(λ)
PX(λ)= A2(λ)PX(λ-1) + B2(λ)

FINE TO COARSE 
X(λ-1) = F(λ) X(λ) + W*(λ)
PX(λ-1)= F2(λ)PX(λ) + Q(λ)

• X(λ) = field
• PX(λ) = field variance
• A(λ), B(λ) parameters 
estimated by model of ppn
multiscale variability structure
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Discussion

Parameters related to ppn field spatio-
temporal organization
Focus on magnitude/variability
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" Wavelets for discontinuous sparse fields, no Fourier !

" Categorical approaches are robust and resistant; they 
enable to verify for different intensities

" De-noising preserving extremes

" Skill measures; error relative to presence of features at 
each scale; account for predictability at different scales

" Error decomposition (displacement, amount) at different   
scales 

" Error in spectral representation 

Concluding remarks



• Wavelets are locally defined real functions 
characterised by a location and a spatial scale.

• Any real function can be expressed as a linear 
combination of wavelets, i.e. as a sum of components 

with different spatial scales. 

• Wavelet transforms deal with discontinuous and 
sparse fields better than Fourier transforms do
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Haar Wavelet filter

deviation from 
mean value
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