
Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Mediterranean Forecasting System: Toward Environmental Predictions

OGCM
- 3D primitive equation
- Z coordinates
- Horizontal resolution 1/8° · 1/8°
- 31 vertical levels

Simulations
- Forecast: 10 days
- Assimilation each week
- Forcing: Rigid lid, Atlantic box, Heat fluxes from atmospheric fields

Realized in the INGV of Bologna: www.bo.ingv.it

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Assessment of the Sea Surface Temperature: The problematic

Simulations

Comparison

Observations

Snap shot view: no spatial or temporal context
Assessment of the Sea Surface Temperature: The Mean Square Error

\[\text{MSE} = \left[(S - O) \right]^2 \]

O: Satellite observations available every week

S: Simulations from the OGCM

Hindcasts \(H_i \) are provided every day

Hindcasts = Forecast + assimilation

\[S = \left(\sum_{i=D1}^{D7} H_i \right) / 7 \]

Period: September 1999 – August 2000

Region: the whole Mediterranean Basin

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.

GHER, University of Liege, Belgium
Error Decomposition Method (EDM) : the principle

Inspired by ‘E. E. Ebert and J. L. McBride 2000’.

- \[\text{MSE} = \left[(S(i,j,t) - O(i,j,t))^2 \right] \]
 where \(S \) : Simulations, \(O \) : Observations
 \(i, j \) : grid points
 \(t \) : weeks

- Parameters optimization
 \(J \) the temporal shift,
 \((d_x, d_y) \) the bi-dimensional translation,
 \(T_i \) the bias
 minimizing the Mean Square Error

- \[\text{MSE} = \text{MSE}_{\text{Trs Time}} + \text{MSE}_{\text{Trs Space}} + \text{MSE}_{\text{Intensity}} + \text{MSE}_{\text{pattern}} \]
Evaluation of the time positioning parameter J and of its corresponding error

Translation in time: \[J \in [J_1 - \text{lim}, J_1 + \text{lim}] \]

\[
\text{MSE}_{M1} = \{ [S(i,j,t+J) - O(i,j,t)]^2 \} \quad \text{is minimum}
\]

\[
\text{MSE}_{\text{Trs time}} = \text{MSE}_O - \text{MSE}_{M1}
\]
Translation in space: \((dx, dy)\) \([-2, +2]\) as

\[
MSE_{M2} = \{ [S(i+dx, j+dy, t) - O(i,j,t)]^2 \} \text{ is minimum}
\]

\[
MSE_{\text{Trs space}} = MSE_{\text{Trs time}} - MSE_{M2}
\]
Error Decomposition Method (EDM): 3rd step and 4th step

- **Evaluation of the intensity parameters** T_i **and of its corresponding error**

Intensity: \[T_i \]

\[
\text{MSE}_{M3} = \left\{ \left[S(i,j,t) - O(i,j,t) + T_i \right]^2 \right\} \text{ is minimum}
\]

\[
\text{MSE}_{\text{Intensity}} = \text{MSE}_{\text{Trs space}} - \text{MSE}_{M3}
\]

- **Evaluation of the pattern error**

Pattern:

\[
\text{MSE}_{\text{Pattern}} = \text{MSE}_O - \text{MSE}_{\text{Trs time}} - \text{MSE}_{\text{Trs space}} - \text{MSE}_{\text{Intensity}}
\]

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Problem of time and space domain of optimization: the problematic

\[\text{T. Domain S. Domain} \]

\[\text{MSE} (i,j,t) = \sum_t \sum_i \sum_j \left(S(i,j,t+J) - O(i,j,t) \right)^2 / (Ls.Ls.Lt) \]

\[\text{MSE} (i,j,t) = \sum_i \sum_j \left(S(i+dx,j+dy,t) - O(i,j,t) \right)^2 / (Ls.Ls) \]

\[T_i = \sum_i \sum_j \left(S(i,j,t) - O(i,j,t) \right) / (Ls.Ls) \]

where \(Lt \) is the length of the time domain (nbr of weeks used)
\(Ls \) is the length of the space square domain (nbr of grid pts)

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Local analyze (Step by step analysis)

Choice of the temporal length L_t

Choice of the spatial length L_s

Result

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Global analyze

(one by one analysis)

1st week of October, spatial length $L_s=14$ ($1.75^\circ, 160$ km), time length $L_t=5$ days

Translation in time

Gain: 58% MSE resolved
Error Decomposition Method (EDM) : Application 2

Translation in space

Gain : 25% MSE resolved

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
Error Decomposition Method (EDM) : Interest of the method

- **Analyze of the parameters themselves**

- **Correlation Type – Source of the errors**
 - **Temporal shift**
 - Forcing : filtering
 - Assimilation : synopticity

 - **Spatial shift**
 - Bathymetry : discretization
 - Parameterization

 - **Intensity shift**
 - Forcing : bias
 - Missing information

 - **Pattern error**
 - Parameterization : turbulence
 - Model discretization

- **Solution of the double penalty**

 Comparison of $\text{MSE}_{\text{Pattern}}$

Z. Ben Bouallegue, A. Alvera-Azcarate, J.-M. Beckers.
GHER, University of Liege, Belgium
E. E. Ebert, and J. L. McBride 2000. ‘Verification of precipitation in weather systems: determination of systematic errors’

Bureau of Meteorology Research Centre, Melbourne, Vic., Australia

Thank you for your attention