VERIFICATION OF QUANTITATIVE PRECIPITATION FORECASTS USING BADDELEY'S DELTA METRIC

Thomas C.M. Lee, Eric Gilleland, Barb Brown and Randy Bullock

National Center for Atmospheric Research Research Applications Division

INTRODUCTION: BACKGROUND

INTRODUCTION: OUTLINE

- Localization performance measures
- Metrics and notation
- Baddeley's Delta Metric
- Using Baddeley's Delta Metric for object matching and merging
- Results from two image pairs
- Future and Ongoing Work

Localization performance measures

Some other choices of "distance" measures for comparing binary image objects A and B for a discrete raster X are: the mean error distance,

$$\bar{\mathbf{e}}(A,B) = \frac{1}{n(B)} \sum_{x \in B} d(x,A),$$

the mean square error distance

$$\bar{\mathbf{e}^2}(A,B) = \frac{1}{n(B)} \sum_{x \in B} d(x,A)^2,$$

among others.

Localization performance measures: some problems

Problems with the above error measures:

- Insensitive to type II errors (predicting an event when no event occurrs). For example, if $B \supseteq A$ (i.e., all errors are of type II), then $\bar{e} = \bar{e^2} = 0$ regardless of the positions of the type II errors.
- They are also insensitive to patterns of type I errors.

A metric is sensitive to type I and type II errors.

A metric, Δ , between two sets of pixels A and B contained in a pixel raster X satisfies the axioms

- $\Delta(A, B) = 0$ if and only if A = B;
- symmetry: $\Delta(A, B) = \Delta(B, A);$
- \bullet triangle inequality: $\Delta(A,B) \leq \Delta(A,C) + \Delta(C,B)$

(Similarly, for the "distance" between two pixels x and y, say $\rho(x, y)$, in a raster of pixels. Just replace Δ with ρ and A, B with x, y.)

Metrics and notation

Let d(x, A) denote the shortest distance from pixel x to $A \subseteq X$. That is,

 $d(x,A) = \min\{\rho(x,a): \ a \in A\}$

Also, $d(x, \emptyset) \equiv \infty$.

 $d(\cdot,A)$ can be computed rapidly by the distance transform algorithm. See, for example:

- Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image Processing, **34**:344–371, 1986.
- Rosenfeld and Pfalz, J.L. Sequential operations in digital picture processing. *Jour*nal of the Association for Computing Machinery, **13**:471, 1966.
- Rosenfeld and Pfalz, J.L. Distance functions on digital pictures. *Pattern Recognition*, **1**:33–61, 1968.

Let $A, B \in X$, where X is a raster of pixels. The Hausdorff distance is given by:

$$H(A,B) = \max\{ \mathrm{sup}_{x \in A} d(x,B), \mathrm{sup}_{x \in B} d(x,A) \}$$

That is, H(A, B) is the maximum distance from a point in one set to the nearest point in the other set.

(Also set $H(\emptyset, \emptyset) = 0$ and $H(\emptyset, B) = H(B, \emptyset) = \infty$ for $B \neq \emptyset$)

Under certain conditions (which are met for our purposes provided $A, B \neq \emptyset$) H can be written as:

$$H(A,B) = \sup_{x \in X} |d(x,A) - d(x,B)|$$

The Hausdorff metric is the length of the red line here.

H(A,B) has an extreme sensitivity to changes in even a small number of pixels.

Baddeley's Delta Metric

Replace the suprema in $H(A, B) = \sup_{x \in X} |d(x, A) - d(x, B)|$ with an L_p norm. That is,

$$\Delta^{p}(A,B) = \left[\frac{1}{n(X)} \sum_{x \in X} |d(x,A) - d(x,B)|^{p}\right]^{1/p}$$

for $1 \leq p < \infty$.

However, the above is not a bounded metric. One can simply transform the metrics $d(x, \cdot)$ so that it is a bounded metric. Specifically, let w be a concave function $(w(s+t) \le w(s) + w(t))$ that is strictly increasing at zero (w(t) = 0 iff t = 0). The transformation used here is $w(t) = \min\{t, c\}$, for a fixed c > 0. So, the new metric, called Baddeley's delta, is given by

$$\Delta_{w}^{p}(A,B) = \left[\frac{1}{n(X)} \sum_{x \in X} |w(d(x,A)) - w(d(x,B))|^{p}\right]^{1/p}$$

Using Baddeley's Delta Metric for object matching and merging

Given a forecast image object with n_f objects and an analysis image object with n_a objects.

- Which objects from one field match "best" with objects from the other field.
- Which objects within an image should be merged?
- Ideally, one would compute Δ for all possible mergings. However, there are $2^{n_f} \cdot 2^{n_a}$ possible mergings; which would generally be too computationally intensive to be compared in practice.
- Here, we propose looking at a reasonable subset of the possible mergings.

The proposed technique is as follows.

Let $i = 1, ..., n_f$ denote the i^{th} forecast object, and $j = 1, ..., n_a$ the j^{th} analysis object.

- 1. Compute Δ for each object from forecast with each object from analysis.
- 2. Rank the values from Step 1. For the i^{th} forecast image, let j_1, \ldots, j_{n_a} denote the lowest to highest delta between object i and each object j. Similarly for the j^{th} analysis object denote i_1, \ldots, i_{n_f} as the lowest to highest delta when comparing object j to each forecast object.
- 3. Compute Δ between the *i*th forecast object and object j_1 , then between *i* and j_1 and j_2 (merged together), and so on until object *i* is compared to the merging of all n_a objects from the analysis image.
- 4. Perform Steps 3 and 4 in the other direction. That is, compute the delta between object j and i_1 , j and i_1 and i_2 , etc ...
- 5. Merge and match objects by comparing the above three Baddeley scores.

Results from two image pairs

First image pair example: left is analysis image and right is forecast image. Overall Baddeley delta metric is about 0.271.

One-to-one Baddeley scores for each image (rows are analysis objects and columns are forecast objects).

	1		2	3	,	4		ļ	õ	6	7	8
1	0.1	56	0.32	8 0	.440	0	.461	(0.487	0.542	0.509	0.505
2	0.4	15	0.09	9 0	.391	0	.331	(0.426	0.510	0.482	0.515
3	0.42	28	0.29	5 0	.219	9 0	.241	(0.274	0.411	0.334	0.410
4	0.43	83	0.40	7 0	.11	9 0	.357	(0.317	0.444	0.322	0.394
5	0.5	00	0.40	2 0	.389	0	.05	4 (0.144	0.249	0.255	0.348
6	0.5	47	0.55	3 0	.482	0	.290	(0.176	0.033	0.169	0.212
7	0.5	14	0.51	8 0	.369	0	.296	(0.136	0.201	0.027	0.154
Ra	nks	fror	n ab	ove	mati	rix.	F	0				
	1	2	3	4	С	6	1	8				
1	9	24	40	42	46	54	49	48				
2	37	4	31	25	38	50	44	52				
3	39	20	14	15	18	36	26	35				
4	45	34	5	28	22	41	23	32				
5	47	33	30	3	7	16	17	27				
6	55	56	43	19	11	2	10	13				
7	51	53	29	21	6	12	1	8				

Results

Results of analysis-forecast matching. Note: forecast objects 5 and 8 not matched to any analysis object.

Analysis (A)	Forecast (B)	Baddeley delta score
7	7	0.027
6	6	0.033
5	4	0.054
4 and 3	3	0.080
2	2	0.099
1	1	0.156

Second image pair example: left is analysis image and right is forecast image. Overall Baddeley Delta metric is about 0.223.

Some Results

Baddeley delta one-to-one comparisons. Rows are analysis objects and columns are forecast objects.

	1	2	3	4	5	6
1	0.533	0.567	0.454	0.303	0.170	0.346
2	0.475	0.407	0.313	0.071	0.278	0.391
3	0.281	0.117	0.393	0.395	0.570	0.525
4	0.512	0.515	0.331	0.229	0.177	0.229
5	0.543	0.587	0.384	0.398	0.307	0.081
6	0.462	0.391	0.015	0.311	0.422	0.346
Ranks from previous matrix.						

	1	2	3	4	5	6
1	32	34	26	11	5	16
2	28	24	14	2	9	19
3	10	4	21	22	35	31
4	29	30	15	8	6	7
5	33	36	18	23	12	3
6	27	20	1	13	25	17

Results of matching analysis objects to forecast objects. Note: forecast object 1 not matched.

Analysis	Forecast	Baddeley delta score
6	3	0.015
1 and 4	5	0.069
2	4	0.071
5	6	0.081
3	2	0.117

- How to combine information from "best" matches/merges to give a summary score based on the Baddeley delta.
- What constitutes a "good" Baddeley delta score (have a human expert judge several cases?).
- How to incorporate into overall verification scheme.
- \bullet Characteristics/distributions of $\Delta {\rm 's.}$
- How to compare with Fuzzy Logic analysis of Bullock et al.

- Baddeley, A.J., 1992: Errors in binary images and an L^p version of the Hausdorff metric, *Nieuw Archief voor Wiskunde*, **10**: 157–183.
- Baddeley, A.J., 1992: An error metric for binary images, In W. Forstner and S. Ruwiedel (ed.) Robust Computer Vision Algorithms, Proceedings, International Workshop on Robust Computer Vision, Bonn. Karlsruhe: Wichmann, 59–78.
 - See: http://www.maths.uwa.edu.au/~adrian/metrics.html