Object identification techniques for object-oriented verification

Mike Baldwin CIMMS/University of Oklahoma

Baldwin's presentation on objectoriented verification

Harold Brooks NSSL

Issues

- Object identification how many objects do you see?
- How to characterize and measure differences between objects?
- Dealing with different numbers of observed and forecast objects

Automated rainfall object identification

• Contiguous regions of measurable rainfall (similar to Ebert and McBride 2000)

Connected component labeling

• *Pure* contiguous rainfall areas result in 34 unique "objects" in this example

Expand areas by 15%, connect regions that are within 20km

• Results in 5 objects

Useful characterization

- Attributes related to rainfall intensity and auto-correlation ellipticity were able to produce groups of stratiform, cellular, linear rainfall systems in cluster analysis experiments
- However, autocorrelation calculation is SLOW

New auto-correlation attributes

 Replaced ellipticity of AC contours with max-min correlation at specific lags (50, 100, 150km, every 10°)

Attributes

- Area (km²), lat, lon
- Mean, std dev (σ) of precip (mm) within object
- Difference between max & min correlation at 50, 100, 150km lags (Δcorr)
- Orientation angle (θ) of max correlation at 50, 100, 150km lags (E-W = 0°, N-S=90°)
- Each object is characterized by 11 attributes, with a wide variety of units, ranges of values, etc.

How to measure "distance" between objects

- How to weigh different attributes?
 - Is 250km spatial distance same as 5mm precipitation distance?
- Do attribute distributions matter?
 - Is 55mm-50mm same as 6mm-1mm?
- How to standardize attributes?
 - X'=(x-min)/(max-min)
 - X'=(x-mean)/ σ
 - LEPS

Decided to use LEPS

- Distance = 1 equates to difference between largest and smallest object for a particular attribute
- Linear for uniform dist (lat, lon, θ)
- Have to be careful with $\Delta \theta$

• L1-norm:
$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

NSSL/SPC Spring Program 2004

	WRF-NMM	WRF-NCAR	WRF-CAPS
Horz/ vert grid	4.5km/ 35 lvls	4.0km/ 35 lvls	4.0km/ 51 lvls
Physics	MYJ PBL Ferrier micro, GFDL rad	YSU PBL, Lin et al. micro, Dudhia-RRTM rad	YSU PBL, Lin et al. micro, Dudhia- RRTM rad
Init cond	Eta (interp 40 km)	Eta (interp 40km grid)	Eta + ADAS + Level II

Observed ppt = Stage II (radar-only) 4km 1h accum

• Comparison for ~1 month (May 10 – Jun 4)

Object ID and characterization

- Remapped each model to same grid as Stage II, common domain for all
- Run object ID, get attributes
- Create database of objects meso-α scale and larger [~ (200 km)²]

How to match observed and forecast objects?

How to match observed and forecast objects?

Estimate of d_T threshold

- Compute distance between each observed object and all others at the same time
- $d_T = 25^{th}$ percentile = 2.5
- Forecasts have similar distributions

Example of object verf

Object identification procedure identifies 2 forecast objects and 2 observed objects

NCAR WRF 4km

WRF NCAR

Attributes

Distances between objects

- After transforming raw attributes to probability space (observed CDF: LEPS)
- Using L1-norm (Manhattan distance)

Fcst_1, Obs_1 : 1.48 [match]

Fcst_2, Obs_1: 2.74

Fcst_1, Obs_2: 2.75

Fcst_2, Obs_2 : 1.39 [match]

Obs_1, Obs_2 : 2.18 Fcst_1, Fcst_2 : 3.81

Average distances for matching fcst and obs objects

- 1-30h fcsts, 10 May 03 June 2004
- Eta (12km) = 2.12
- WRF-CAPS = 1.97
- WRF-NCAR = 1.98
- WRF-NMM = 2.02

With set of matching obs and fcsts

- Nachamkin (2004) compositing ideas
 - errors given fcst event
 - errors given obs event
- Distributions of errors for specific attributes
- Use classification to stratify errors by convective mode