Object identification techniques for object-oriented verification

Mike Baldwin
CIMMS/University of Oklahoma

Baldwin's presentation on objectoriented verification

Harold Brooks
NSSL

Issues

- Object identification how many objects do you see?
- How to characterize and measure differences between objects?
- Dealing with different numbers of observed and forecast objects

Automated rainfall object identification

- Contiguous regions of measurable rainfall (similar to Ebert and McBride 2000)

Connected component labeling

- Pure contiguous rainfall areas result in 34 unique "objects" in this example

34.000
32.000
-30.000
28.000
26.000
24.000
22.000
20.000
18.000
16.000
14.000
-12.000
10.000
8.000
6.000
4.000
2.000

Expand areas by 15%, connect regions that are within 20 km

- Results in 5 objects

Useful characterization

- Attributes related to rainfall intensity and auto-correlation ellipticity were able to produce groups of stratiform, cellular, linear rainfall systems in cluster analysis experiments
- However, autocorrelation calculation is SLOW

New auto-correlation attributes

- Replaced ellipticity of AC contours with max-min correlation at specific lags (50, 100, 150km, every 10°)

Attributes

- Area (km^{2}), lat, lon
- Mean, std dev (σ) of precip (mm) within object
- Difference between max \& min correlation at 50, 100, 150km lags (Δ corr)
- Orientation angle (θ) of max correlation at 50 , $100,150 \mathrm{~km}$ lags ($\mathrm{E}-\mathrm{W}=0^{\circ}, \mathrm{N}-\mathrm{S}=90^{\circ}$)
- Each object is characterized by 11 attributes, with a wide variety of units, ranges of values, etc.

How to measure "distance" between objects

- How to weigh different attributes?
- Is 250 km spatial distance same as 5 mm precipitation distance?
- Do attribute distributions matter?
- Is $55 \mathrm{~mm}-50 \mathrm{~mm}$ same as $6 \mathrm{~mm}-1 \mathrm{~mm}$?
- How to standardize attributes?
- $\mathrm{X}^{\prime}=(\mathrm{x}-\min) /(\max -\min)$
- $\mathrm{X}^{\prime}=(\mathrm{x}-\mathrm{mean}) / \sigma$
- LEPS

Decided to use LEPS

- Distance $=1$ equates to difference between largest and smallest object for a particular attribute
- Linear for uniform dist (lat, lon, θ)
- Have to be careful with $\Delta \theta$
- L1-norm: $d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

NSSL/SPC Spring Program 2004

	WRF-NMM	WRF-NCAR	WRF-CAPS
Horz/ vert grid	$4.5 \mathrm{~km} / 35$ lvls	$4.0 \mathrm{~km} / 35$ lvls	$4.0 \mathrm{~km} / 51$ lvls
Physics	MYJ PBL Ferrier micro, GFDL rad	YSU PBL, Lin et al. micro, Dudhia-RRTM rad	YSU PBL, Lin et al. micro, Dudhia- RRTM rad
Init cond	Eta (interp 40 km)	Eta (interp 40km grid)	Eta + ADAS + Level II

Observed ppt $=$ Stage II (radar-only) 4 km 1 h accum

- Comparison for ~ 1 month (May 10 - Jun 4)

Object ID and characterization

- Remapped each model to same grid as Stage II, common domain for all
- Run object ID, get attributes

- Create database of objects meso- α scale and larger
[$\left.\sim(200 \mathrm{~km})^{2}\right]$

How to match observed and forecast objects?

$\mathrm{O}_{1}=$ missed event

How to match observed and forecast objects?

$\mathrm{O}_{1}=$ missed event

Estimate of d_{T} threshold

- Compute distance between each observed object and all others at the same time
- $\mathrm{d}_{\mathrm{T}}=25^{\text {th }}$ percentile $=2.5$
- Forecasts have similar distributions

Example of object verf

NCAR WRF 4km

PPT (mm) 10m HIND
Q1h accum
YALID 19204 MAY 04
MRF NCAR
19-H
4.0 KM LMB CON GRD

Stage II radar ppt

PPT(mm)
Q1h accum
$\begin{array}{ll}\text { VALID } 19 Z 04 \text { MAY } 04 & 4.8 \mathrm{KM} \text { POL STR GRD }\end{array}$

Object identification procedure identifies 2 forecast objects and 2 observed objects

NCAR WRF 4km

Attributes

HRF NCAR

19-H
FCST
4.0 KM LMB CON GRD

Stage II radar ppt
4.8 KM POL STR GRD

$\theta(150)=173^{\circ}$
lat $=40.2^{\circ} \mathrm{N}$
lon $=92.5^{\circ} \mathrm{W}$
Obs
Obs

Fcst_2 Obs_1
Obs_2

Area=70000 km ${ }^{2}$	Area=285000	Area=135000	Area $=70000 \mathrm{~km}^{2}$
mean(ppt)=0.97	mean(ppt)=0.32	mean(ppt)=0.45	mean(ppt)=0.60
$\sigma(\mathrm{ppt})=1.26$	$\sigma(\mathrm{ppt})=0.44$	$\sigma(\mathrm{ppt})=0.57$	$\sigma(\mathrm{ppt})=0.67$
$\Delta \operatorname{corr}(50)=1.17$	$\Delta \operatorname{corr}(50)=0.27$	$\Delta \operatorname{corr}(50)=0.37$	$\Delta \operatorname{corr}(50)=0.36$
$\Delta \operatorname{corr}(100)=0.99$	$\Delta \operatorname{corr}(100)=0.42$	$\Delta \operatorname{corr}(100)=0.54$	$\Delta \operatorname{corr}(100)=0.52$
$\Delta \operatorname{corr}(150)=0.84$	$\Delta \operatorname{corr}(150)=0.48$	$\Delta \operatorname{corr}(150)=0.58$	$\Delta \operatorname{corr}(150)=0.49$
$\theta(50)=173^{\circ}$	$\theta(50)=95^{\circ}$	$\theta(50)=171^{\circ}$	$\theta(50)=85^{\circ}$
$\theta(100)=173^{\circ}$	$\theta(100)=85^{\circ}$	$\theta(100)=11^{\circ}$	$\theta(100)=75^{\circ}$
$\theta(150)=173^{\circ}$	$\theta(150)=85^{\circ}$	$\theta(150)=11^{\circ}$	$\theta(150)=65^{\circ}$
lat $=40.2^{\circ} \mathrm{N}$	lat $=47.3^{\circ} \mathrm{N}$	lat $=39.9^{\circ} \mathrm{N}$	lat $=44.9^{\circ} \mathrm{N}$
lon $=92.5^{\circ} \mathrm{W}$	lon $=84.7^{\circ} \mathrm{W}$	$\text { lon }=91.2^{\circ} \mathrm{W}$	lon $=84.5^{\circ} \mathrm{W}$

Distances between objects

- After transforming raw attributes to probability space (observed CDF: LEPS)
- Using L1-norm (Manhattan distance)

Fcst_1, Obs_1: 1.48 [match]
Fcst_2, Obs_1:2.74
Fcst_1, Obs_2: 2.75
Fcst_2, Obs_2: 1.39 [match]

Average distances for matching fcst and obs objects

- 1-30h fcsts, 10 May - 03 June 2004
- $\operatorname{Eta}(12 \mathrm{~km})=2.12$
- WRF-CAPS = 1.97
- WRF-NCAR $=1.98$
- $\mathrm{WRF}-\mathrm{NMM}=2.02$

With set of matching obs and fcsts

- Nachamkin (2004) compositing ideas
- errors given fcst event
- errors given obs event
- Distributions of errors for specific attributes
- Use classification to stratify errors by convective mode

