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Aggregation/Stratification

e Aggregation
— Across time?
» Results for each grid point/location
— Space?
» Results for each time
— Space and time?
» Results summarized across spatial region and across time

e Stratification

— By grid point/forecast? Region? Time period (e.g., according to
diurnal variation)?



Matching Forecasts and Observations

* Matching approach depends on
— Nature of forecasts and Forecast grid
observations <.
e Scale
e Consistency ]
e Sparseness . —
— Other matching criteria
» Verification goals
* Use of forecasts

o Grid to Grid approach
— Overlay forecast and observed
grids
— Match each forecast and VDL
Observatlon Mlss Correctly Detected

(Detection = Yes)

‘r=__

Observed grld

Correcth,.r excluded




Matching forecasts and observations

 Point-to-Grid and </

Grid-to-Point

e Matching approach can
Impact the results of the
verification




Matching forecasts and observations

Example: 20
— Two approaches:

« Match rain gauge to >
nearest gridpoint

or

 Interpolate grid values to rain
gauge location

— Crude assumption: equal weight
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to each gridpoint

— Differences in results associated
with matching:

“representativeness” error
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The “good” news: Representativeness error generally is

smaller than the forecast errors




Traditional verification approaches

Compute statistics on forecast-observation pairs
— Continuous values (e.g., precip amount, temperature, NWP
variables):
« MSE, ME, Correlation
« S1 score, Anomaly correlation

« Others (e.g., new score under development by Venugopal et al.
2004)

— Categorical values (e.g., precip occurrence):

« Contingency table statistics (POD, FAR, Heidke skill score,
Equitable threat score, Hanssen-Kuipers statistic)



Venugopal et al. approach for grid comparisons

e Ratio of an image distance measure to a magnitude
difference metric
—Distance measure: Modified Hausdorff distance
—Magnitude metric: Based on means, standard deviations,
covariances of precipitation field
 May be more sensitive to true differences between
Images than other measures (e.g., RMSE, ETS)
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“Standard” Verification Measures (Yes/No forecasts)

Forecast | _ —= _
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Observation

H = Hits

M = Misses

F = False Alarms
POD=H/(H+M)

POFD = proportion of “No” area that
was correctly forecast to be “No”
FAR=F/(H+F)
Bias=(F+H)/(M+ H)

CSI=H/(M+H+F)
Measures “relative accuracy”
H-K = POD + POFD -1

Measures “discrimination” between Yes
and No observations

POD (PODy)

Measures proportion of observed area
that is correctly forecast to be “Yes”

POFD (PODn)

Measures proportion of area that is
correctly forecast to be “No”

FAR

Measures proportion of forecast
convective area that is incorrect

Bias
Measures the extent of over- or under-
forecasting

Skill scores (Heidke, Gilbert/ETS)

Measure the improvement in percent
correct and CSI, respectively over
what's expected by chance



PODy=0.39, FAR=0.63, CS51=0.24
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What's missing?

Traditional approaches provide overall measures of
skill... BUT

They provide minimal diagnostic information about
the forecast:

— What went wrong?

— What went right?

— How can | improve this forecast?

— How can | use it to make a decision?

Best performance for smooth forecasts
Insensitive to the size of the errors...



What makes a good spatial forecast,
anyway?

For spatial forecasts we tend to focus on features on maps.
In a good spatial forecast, the feature* will:

* be predicted to occur

* be located in the right place

* have the correct amplitude

e be about the right size

* have the right shape

* have appropriate spatial variability and structure(s)

*Depending on the spatial and temporal scales of interest, the feature
may actually be a group of weather elements (thunderstorms, for
example)



Challenges and issues —
high resolution forecasts

Which rain forecast would you rather use?

Mesoscale model (5 km) 21 Mar 2004 Global model (100 km) 21 Mar 2004

150




Challenges and issues —
high resolution forecasts

High resolution forecasts give detailed spatial and temporal
structures

& Positive impact on usefulness of forecast

More realistic representation of convection

Better representation of topographic effects and diurnal circulations
Better definition of frontal zones

Local maxima and minima better resolved

S Negative impact on standard verification scores

Amplitude errors magnified compared to low-res forecasts

Small spatial or temporal offsets likely to count as misses and false
alarms



Position / timing errors

T = Observation Location
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More realistic structures in high resolution forecasts get penalized more
if there are positional or timing errors



"Double penalty”

Event predicted where it did not occur,
no event predicted where it did occur

Ex: Two rain forecasts giving the same volume

High resolution forecast Low resolution forecast
RMS ~ 4.7 RMS ~ 2.7
POD=0, FAR=1, TS=0 POD~1, FAR~0.7, TS~0.3



Verification philosophies for high
resolution forecasts

Need we get the forecast exactly right? Often close
enough Is good enough...

YES NO

» Topographically influenced weather » Guidance for weather forecasters

Yl e, CRgEILe FEin, EE) * Model validation (does it predict

» Hydrological applications (e.g. flash what we expect it to predict?)
iloges) » Observations may not allow

» High stakes situations (e.g. space standard verification of high
shuttle launch, hurricane landfall) resolution forecasts
Standard verification methods Diagnostic methods

verify attributes of forecast



Goal of diagnostic verification —
understanding the sources of the errors

e Advanced diagnostic methods help quantify errors in:
— Occurrence
— Location
— Amplitude
— Size
— Shape
— Variability
e Can we determine the relative importance of these
sources of error?
— Error decomposition methods
— Scale separation methods



Visual ("eyeball”) verification

Oldest, perhaps most informative, method
but not quantitative...
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Practically perfect hindcasts
(Brooks & Kay)

Rare events are, by nature, difficult to predict accurately
and difficult to observe accurately. Ex: tornadoes

Forecasts are often given as watch or warning regions

Standard verification doesn't work well

Most of warning region is false alarm, even when the event occurs
In the region

Observations of non-events generally not reported

Persistence or climatology aren't really appropriate reference
forecasts for skill scores



Practically perfect hindcasts
(Brooks & Kay)

PP approach: If the forecaster had all of the observations
In advance, what would the "practically perfect" forecast
look like? Apply a smoothing function to the observations
to get probability contours, choose an appropriate yes/no
threshold

- Did the actual forecast look like the practically perfect
forecast?

How would the practically perfect forecast score when
verified against the observations?

- How did the verification score for the actual forecast
compare to the score for the practically perfect forecast?



Practically perfect hindcasts
(Brooks & Kay)

SPC convective outlook Practically Perfect forecast
Threat score=0.34 Threat score=0.48
Convective outlook is 75% of the way to being "practically perfect"



Fuzzy verification (Damrath)

For a given region of interest, when is a forecast useful?

Some possible decision criteria:

e |f the event of interest is forecast and observed at
precisely the same points

 |f the event of interest is forecast and observed over a
minimum fraction of the region of interest (50%7?)

* |f the event of interest is forecast and observed at any ® o
point in the region of interest

 |f the event of interest is forecast and observed with
certain frequencies P; and P, — how to use this
iInformation?




Fuzzy verification (Damrath)

Contingency table elements depend on decision criterion:

Observed
yes no
Agreement at every g ves hits aflglrsrgs
point in region S _ traditional
E no misses COI‘I‘QCt
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Observed
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Forecasts partially correct, partially incorrect



Fuzzy verification (Damrath)

Results:

For traditional
verification the
scores improve as
the window (grid)
Size increases
(location errors
less important) .

For fuzzy
verification the
scores tend to get
poorer as the
window (grid) size
increases
(forecasts and obs
less certain).
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Spatial multi-event contingency table
(Atger, 2001)

Experienced forecasters interpret output from a high
resolution deterministic forecast in a probabilistic way

< "high probability of some heavy rain near Sydney",
not "62 mm of rain will fall in Sydney"

—

The deterministic forecast is mentally "calibrated"
according to how "close" the forecast is to the place /
time / magnitude of interest.

Very close - high probability
Not very close - low probability



Spatial multi-event contingency table
(Atger, 2001)
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« magnitude (ex: 1 mm h-*to 20 mm h)

 distance from point of interest (ex: within 10 km, .... , within 100 km)
e timing (ex: within 1 h, ..., within 12 h)

« anything else that may be important in interpreting the forecast



Spatial multi-event contingency table

(Atger, 2001)

Vary more than one decision
threshold

ROC curve for varying rain threshold
and varying distance from point of
interest

N = (# rain thresholds) x (# distance thresholds)

Can apply to ensembles, and to
compare deterministic forecasts
to ensemble forecasts

ROC curve for varying rain threshold
and varying distance from point of
interest, for an EPS

N = (# rain thresholds) x (# distance thresholds)
X (# ensemble members)
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Spatial multi-event contingency table
(Atger, 2001)

Can also evaluate and compare forecasts in terms of
Relative Value

0.9 _ ------- Deterministic forecast
Ensemble prediction system
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Relative Value




Scale separation methods

Measure error as a function of spatial scale

Examples:

« Wavelet decomposition (Briggs and Levine, 1997; Alvera-
Azcarate, 2004)

« Multiscale statistical properties (Zepeda-Arce et al., 2000;
Harris et al., 2001)

» Discrete cosine transformation (Denis et al., 2002)
« Scale recursive estimation (Tustison et al., 2003)

* Intensity-scale verification approach (Casati et al., 2004)

—> Barbara Casatli's talk this afternoon!



q, PSD (arbitrary units)

Multiscale statistical properties

(Harris et al., 2001)

Does a model produce the observed precipitation scale-
dependent variability, i.e. does is look like real rain?

Compare multiscale statistics for model and radar data
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Feature calibration and alignment
(Hoffman et al., 1995; Nehrkorn et al., 2003)

Subjective evaluation of a spatial forecast may suggest
"front moved too fast in the model" or "forecast low too
far to the south", etc.

Need for an objective evaluation method that accounts for
phase and amplitude errors

Feature calibration and alignment (FCA) strategy uses
pattern matching of forecast field to analysis field to
determine fields of phase, amplitude, residual errors

— Hoffman et al. (1995) — maximize spatial correlation
— Nehrkorn et al. (2003) — spectral variational techniques
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Error decomposition
e = X{(r) - X(r)

where X(r) is the forecast,
X,(r) is the verifying analysis,
and r is the position.

e=e,te,+e
where
e, = X{r) - X4(r) phase error
e, = Xq4(r) - X,(r) local bias error

e, = X,(r) - X,(r) residual error



Entity-based approach
(Ebert and McBride, 2000)

When one or more features of interest are present in a
forecast the spatial verification does not separate the
performance for one feature from the performance for
another.

Example: National scale QPF verification

It “r‘
b 4
[

40 e X T ol T e
115 120 425 130 135 140 145,150 155

LAPS125 24h valid O0UTC 20020205
. g :

S s ¥

[ 2 5 10 23 30 100 150 200
N S B — . — — |

Entity-based verification
focuses only on features of
Interest (entities)

e Determines location errors

 Verifies properties of location-
corrected entities

 Decomposes error into location,
amplitude, and pattern components



Entity-based approach
(Ebert and McBride, 2000)

* Define entities using threshold (Contiguous Rain Areas)
« Horizontally translate the forecast until a pattern
matching criterion is met:
—minimum total squared error between forecast and observations
—maximum correlation

—maximum overlap

« The displacement is the vector difference between the
original and final locations of the forecast.

Observed Forecast



Entity-based approach
(Ebert and McBride, 2000)

CRA 20020204

LAP=125 fest 20020204

. 200
: g e Y
1st CRA: &7 - @ | .
- - E 160 4
Tropical - = g +
2 -
Cyclone PTE 7/
. 5 E i ]
Chris SEaS¥as (. el
8] PRI 1
a 50 100 120 2040

Analyzed rainfall

LAPS125 00—24 fost 20020204 n=2527

3
- ‘\"\ (—22.75°,110.38") 1o [—14.00°,130.25%)

Analysis 26020204 Verif. grid=0.125% CRA threshald=10.0 mm /d

Analysed  Forscaost

4 gridpoints 210 mm/d 1857 852
Average rainrate [mm/d) 31.71 15.72
Maximum rain (mm,/d} 183.23 110.45
Rain volume (km™ 14.64 7.26

Displacement (E,N] = [2.12%3.62°]
Original Shifted

RMS errar {rmm/d) 40,84 35.83
Correlation coefficient 0.215 0.520

Errer Decomposition:
Cisplacement errcr 3%
Yolume error 13.9%
Pattern srror 28.0%




Entity-based approach
(Ebert and McBride, 2000)
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Entity-based approach
(Ebert and McBride, 2000)

Distribution-oriented verification for entity properties
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Entity-based approach
(Ebert and McBride, 2000)

Error decomposition based on optimizing total squared error:

The total mean squared error (MSE) can be written as:
MSE = |vlSEdispIacement + |VISEvolume + IVISEpattern

total —

The difference between the mean square error before and after translation is
the contribution to total error due to displacement,

IvlSEdisplacement = IvlSEtotaI - IvlSEshifted
The error component due to volume represents the bias in mean intensity,
IvlSEvqume = (F - X )2

where F and X are the mean forecast and observed values after the shift.

The pattern error, computed as a residual, accounts for differences in the fine
structure of the forecast and observed fields,

MSE = MSEited - MSE, o1ume

pattern



Entity-based approach
(Ebert and McBride, 2000)

Alternate error decomposition based on optimizing spatial correlation:

The total mean squared error (MSE) can be written as:

IVISEtotaI = |vlSEdlspIacement + |VISEvolume + IVISEpattern
Murphy's (1995) decomposition of the MSE:
MSE =(F - X)* +(s, —rs. )* +(1-r?)s?

where F and X are the mean forecast and observed values before the shift.
Correcting the forecast location improves its correlation with the observations,
rop- Adding and subtracting r,,, and rearranging,

MSE

opt

= 25 SX(ropt - )

displacement

MSE =(F - X)?

volume

MSE jarern = 25:Sx (1=Toy ) + (Sg =Sy )’



Entity-based approach
(Ebert and McBride, 2000)

How do these two error decompositions compare to each
other?

Comparison of CRA error decompositions for 24 h QPFs from 7 global and
regional NWP models over Australia, 2000-2003.
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Entity-based approach
(Ebert and McBride, 2000)

Event forecast classification

Select the two most important aspects of a useful forecast for an event,
for example:

 Forecast location must be close to the observed location
* Predicted magnitude must be close to the observed
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Object-oriented approaches

GOAL.: A verification approach that is consistent with
“eyeball” verification

Diagnostic information that
—Can be used to improve the forecasts
—Provides useful information to decision makers

Types of information

—Location

—Amplitude

—Size

—Shape
Examples: Marzban and Sandgathe (U. Washington);
Baldwin (NSSL); Bullock, Brown et al. (NCAR)



Example: 13 June 2000, 23Z, 6-h
Collaborative Convective Forecast Product (CCFP)
(Human generated forecast)

Original shape:
POD =0.37 Bias=1.3
FAR=0.71 CSl =0.19

Tranglated and rotated
shape:

POD =0.52 Bias=1.3
FAR=060 CSI=0.29

Trangdation: 0km
Rotation: -10°




Cluster analysis approach
(Marzban and Sandgathe)

See talk later today (Marzban)

Goal: Assess the agreement between fields using
clusters identified using agglomerative hierarchical
cluster analysis (CA)

CA identifies clusters that generally agree with human
visual interpretation

Optimize clusters (and numbers of clusters) based on
—Binary images (x-y optimization)
—Magnitude images (X-y-p optimization)
Compute Euclidean distance between clusters in forecast
and observed fields (in x-y and x-y-p space)
— Evaluate significance using t-test



Y-Axis

Cluster analysis approach
(Marzban and Sandgathe)
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Cluster example: MM5
precipitation forecasts

8 clusters identified in x-y-p space




Object-oriented approach (Baldwin)

See talk later this morning (Brooks/Baldwin)

Goal: Measure and compare attributes of forecast and
observed rain areas

Use CRA-type approach to
identify rainfall areas

Measure various (11) attributes
(area, mean and variance of precip
Intensity, orientation angle, etc.)

Measure multi-attribute “distance”
between forecast and observed areas
— Standardize attributes using LEPS

— Select distance threshold to identify
matches, misses and false alarms

Summarize attributes and distances

Object_*

Object_¢

Object_:

Object_:

Object_’



Object-oriented approach (Baldwin)

O, = missed event

Objects might “match”
more than once...
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NCAR WRF 4km
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Baldwin: Object Attributes
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NCAR object-oriented approach

See talks later today (Bullock, Gilleland, Brown)

Define objects in forecast and observation field
— Convolution/threshold approach

Define characteristics of objects

—Shape, Location, Orientation angle, Precipitation intensity,
“Ugliness”, etc.

Merge objects in individual fields

Match objects between fields
—Two approaches: Fuzzy Logic; Baddeley’s delta

Characterize performance: examine object differences
Summarize performance across a set of forecasts



NCAR object-oriented approach
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NCAR object-oriented approach
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Forecast Observed
Symmetric
Composite Intersection Difference (SD)
object Area (lA) Area
A 0 638
B 100 488
C 66 134
D 259 905

Attribute WRF Stage IV | Difference
Composite Objects “A”
Centroid X 187 197 -10
Centroid ¥ 44 31 13
Intensity (0.50) 47 2.5 2.2
Intensity (0.90) 8.5 13.9 5.4
Area 319 319 0
Composite Objects “B”

Centroid X 130 144 -14
Centroid ¥ 36 36 0
Intensity (0.50) 47 2.0 2.7
Intensity (0.90) 8.7 9.7 -1.0

Area 355 333 22
Composite Objects “C”
Centroid X 128 121
Centroid ¥ 93 90
Intensity (0.50) 4.0 2.4 16
Intensity (0.90) 8.5 11.3 2.8
Area 126 140 -14
Composite Objects “D”
Centroid X 205 215 -10
Centroid Y 102 100 2
Intensity (0.50) 3.8 3.8 0
Intensity (0.90) 7.4 13.8 6.4
Area 585 838 -253




Composite approach (Nachamkin)

« Talk yesterday afternoon

e Goal: Characterize distributions of errors from both a
forecast and observation perspective

e Procedure:

—ldentify events of interest in the forecasts
» Rainfall greater than 25 mm
» Event contains between 50 and 500 grid points

—Define a kernel and collect coordinated samples
e Square box

o 31x31 grid points (837x837 km for 27 km grid)
— Compare forecast PDF to observed PDF
—Repeat process for observed events



Composite approach:
Collecting the Samples

Observations

Forecast event

Collection kernedl
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Composite approach:
Kernel grid-average precipitation
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Summary

o Standard methods provide basic information about
performance of spatial forecasts, but are not diagnostic
and may not provide information needed to improve the
forecasts or to optimally use the forecasts

 Issues of scaling are still of concern but are generally
ignored or only considered minimally

 Much progress! in the last 2 years
—Event- or object-based approaches
—Fuzzy verification approaches

— Other alternative approaches (e.g., composite methods; new skill
measures)



The future?

e Evolving ideas about “What makes a ‘good’ forecast”
— Look at bigger picture
— Reliance on probability distributions
* Further development of diagnostic approaches
— Measure attributes of interest to users
— Application to other forecast elements
* Improved approaches for coping with
— Scaling issues
— Spatial correlations

e Application of approaches that provide information that is
“operationally relevant”

Incorporation of observation uncertainty
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