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Aggregation/Stratification
• Aggregation

– Across time? 
! Results for each grid point/location

– Space? 
! Results for each time

– Space and time? 
! Results summarized across spatial region and across time

• Stratification
– By grid point/forecast? Region? Time period (e.g., according to 

diurnal variation)?



Matching Forecasts and Observations

• Matching approach depends on
– Nature of forecasts and 

observations
• Scale
• Consistency
• Sparseness

– Other matching criteria
• Verification goals
• Use of forecasts

• Grid to Grid approach
– Overlay forecast and observed 

grids
– Match each forecast and 

observation

Forecast grid

Observed grid



Matching forecasts and observations

• Point-to-Grid and 
Grid-to-Point

• Matching approach can 
impact the results of the 
verification



Matching forecasts and observations
Example:

– Two approaches:
• Match rain gauge to 

nearest gridpoint 
or
• Interpolate grid values to rain 

gauge location
– Crude assumption: equal weight 

to each gridpoint

– Differences in results associated 
with matching: 

“representativeness” error
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The “good” news: Representativeness error generally is 
smaller than the forecast errors



Traditional verification approaches

Compute statistics on forecast-observation pairs
– Continuous values (e.g., precip amount, temperature, NWP 

variables):
• MSE, ME, Correlation
• S1 score, Anomaly correlation
• Others (e.g., new score under development by Venugopal et al. 

2004)
– Categorical values (e.g., precip occurrence):

• Contingency table statistics (POD, FAR, Heidke skill score, 
Equitable threat score, Hanssen-Kuipers statistic)



Venugopal et al. approach for grid comparisons

• Ratio of an image distance measure to a magnitude 
difference metric

– Distance measure: Modified Hausdorff distance
– Magnitude metric: Based on means, standard deviations, 

covariances of precipitation field

• May be more sensitive to true differences between 
images than other measures (e.g., RMSE, ETS)



“Standard” Verification Measures (Yes/No forecasts)

• H = Hits
• M = Misses
• F = False Alarms
• POD = H / (H + M)
• POFD = proportion of “No” area that 

was correctly forecast to be “No”
• FAR = F / (H + F)
• Bias = (F + H) / (M + H)

• CSI = H / (M + H + F) 
Measures “relative accuracy”

• H-K = POD + POFD -1
Measures “discrimination” between Yes 
and No observations

• POD (PODy)
Measures proportion of observed area 
that is correctly forecast to be “Yes”

• POFD (PODn)
Measures proportion of area that is 
correctly forecast to be “No”

• FAR
Measures proportion of forecast 
convective area that is incorrect

• Bias
Measures the extent of over- or under-
forecasting

• Skill scores (Heidke, Gilbert/ETS)
Measure the improvement in percent 
correct and CSI, respectively over 
what’s expected by chance

M H
F

Observation

Forecast



PODy=0.39, FAR=0.63, CSI=0.24



Example: Model precipitation

ETS

Bias

Eta 12-h 
forecasts

Continental U.S.

(From 
NOAA/FSL 
Real-time 
verification 
System, RTVS)



What’s missing?

• Traditional approaches provide overall measures of 
skill… BUT

• They provide minimal diagnostic information about 
the forecast:
– What went wrong?
– What went right?
– How can I improve this forecast?
– How can I use it to make a decision?

• Best performance for smooth forecasts
• Insensitive to the size of the errors…



What makes a good spatial forecast, 
anyway?

For spatial forecasts we tend to focus on features on maps. 
In a good spatial forecast, the feature* will:

• be predicted to occur
• be located in the right place
• have the correct amplitude
• be about the right size
• have the right shape
• have appropriate spatial variability and structure(s)

*Depending on the spatial and temporal scales of interest, the feature 
may actually be a group of weather elements (thunderstorms, for 
example)



Challenges and issues –
high resolution forecasts

Which rain forecast would you rather use?
Mesoscale model (5 km) 21 Mar 2004

Sydney

Global model (100 km) 21 Mar 2004

Sydney



High resolution forecasts give detailed spatial and temporal 
structures

" Positive impact on usefulness of forecast
More realistic representation of convection
Better representation of topographic effects and diurnal circulations
Better definition of frontal zones
Local maxima and minima better resolved

# Negative impact on standard verification scores
Amplitude errors magnified compared to low-res forecasts
Small spatial or temporal offsets likely to count as misses and false 

alarms

Challenges and issues –
high resolution forecasts



Position / timing errors

More realistic structures in high resolution forecasts get penalized more 
if there are positional or timing errors

RMS=4.19 mb

RMS=4.81 mb

RMS=5.25 mb

(Mass et al., BAMS, 2002)



"Double penalty"

Event predicted where it did not occur, 
no event predicted where it did occur

Ex: Two rain forecasts giving the same volume

High resolution forecast
RMS ~ 4.7
POD=0, FAR=1, TS=0

Low resolution forecast
RMS ~ 2.7
POD~1, FAR~0.7, TS~0.3

10 10 103

fcst obs fcst obs



Verification philosophies for high 
resolution forecasts

Need we get the forecast exactly right?  Often close 
enough is good enough...

YES

• Topographically influenced weather 
(valley winds, orographic rain, etc.)

• Hydrological applications (e.g. flash 
floods)

• High stakes situations (e.g. space 
shuttle launch, hurricane landfall)

NO

• Guidance for weather forecasters

• Model validation (does it predict 
what we expect it to predict?)

• Observations may not allow 
standard verification of high 
resolution forecasts

Diagnostic methods
verify attributes of forecast

Standard verification methods



Goal of diagnostic verification –
understanding the sources of the errors

• Advanced diagnostic methods help quantify errors in:
– Occurrence
– Location
– Amplitude
– Size
– Shape
– Variability

• Can we determine the relative importance of these 
sources of error?

– Error decomposition methods 
– Scale separation methods



Visual ("eyeball") verification 

Oldest, perhaps most informative, method 
but not quantitative...



Practically perfect hindcasts 
(Brooks & Kay)

Rare events are, by nature, difficult to predict accurately 
and difficult to observe accurately. Ex: tornadoes

Forecasts are often given as watch or warning regions

Standard verification doesn't work well
Most of warning region is false alarm, even when the event occurs 

in the region

Observations of non-events generally not reported

Persistence or climatology aren't really appropriate reference 
forecasts for skill scores



Practically perfect hindcasts 
(Brooks & Kay)

PP approach: If the forecaster had all of the observations 
in advance, what would the "practically perfect" forecast 
look like? Apply a smoothing function to the observations 
to get probability contours, choose an appropriate yes/no 
threshold

$ Did the actual forecast look like the practically perfect 
forecast?

How would the practically perfect forecast score when 
verified against the observations?

$ How did the verification score for the actual forecast 
compare to the score for the practically perfect forecast?



Practically perfect hindcasts 
(Brooks & Kay)

SPC convective outlook Practically Perfect forecast

Threat score=0.34 Threat score=0.48

Convective outlook is 75% of the way to being "practically perfect"



Fuzzy verification (Damrath)

For a given region of interest, when is a forecast useful?

Some possible decision criteria:

• If the event of interest is forecast and observed at 
precisely the same points

• If the event of interest is forecast and observed at any 
point in the region of interest

• If the event of interest is forecast and observed with 
certain frequencies Pf and Po – how to use this 
information?

• If the event of interest is forecast and observed over a 
minimum fraction of the region of interest (50%?)



Fuzzy verification (Damrath)

Contingency table elements depend on decision criterion:

Agreement at every 
point in region

Event forecast and 
observed at any 
point in region

Minimum coverage 
X% of forecast and 
observations

Observed
yes no

yes hits false
alarms

no misses correct
negativesP

re
di

ct
ed

Observed
Po ≥ X% Po< X%

Pf ≥ X% hits false
alarms

Pf ≥ X% misses correct
negativesP

re
di

ct
ed

traditional

proportion

Forecast and 
observed events with 
certain frequencies

Observed
Po 1-Po

Pf min(Po, Pf) min(1-Po, Pf)

1-Pf min(Po,1-Pf) min(1-Po, 1-Pf)P
re

di
ct

ed

fuzzy

Forecasts partially correct, partially incorrect



Fuzzy verification (Damrath)

Traditional                Proportion (50%)      Fuzzy

Traditional                Proportion (50%)      FuzzyTraditional                Proportion (50%)      Fuzzy

Results:
For traditional
verification the 
scores improve as 
the window (grid) 
size increases 
(location errors 
less important) .

For fuzzy
verification the 
scores tend to get 
poorer as the 
window (grid) size 
increases 
(forecasts and obs
less certain).



Spatial multi-event contingency table
(Atger, 2001)

Experienced forecasters interpret output from a high 
resolution deterministic forecast in a probabilistic way

Sydney
% "high probability of some heavy rain near Sydney", 

not "62 mm of rain will fall in Sydney"

The deterministic forecast is mentally "calibrated" 
according to how "close" the forecast is to the place / 
time / magnitude of interest.

Very close $ high probability
Not very close $ low probability



Spatial multi-event contingency table
(Atger, 2001)

Measures how well the forecast can separate 
events from non-events based on some 
decision threshold

Decision thresholds to vary:
• magnitude (ex: 1 mm h-1 to 20 mm h-1)
• distance from point of interest (ex: within 10 km, .... , within 100 km)
• timing (ex: within 1 h, ... , within 12 h)
• anything else that may be important in interpreting the forecast

Verify using the Relative 
Operating Characteristic (ROC)

ROC curve for varying rain threshold



Spatial multi-event contingency table
(Atger, 2001)

Vary more than one decision 
threshold

Can apply to ensembles, and to 
compare deterministic forecasts 
to ensemble forecasts

ROC curve for varying rain threshold 
and varying distance from point of 
interest

N = (# rain thresholds) x (# distance thresholds)

ROC curve for varying rain threshold 
and varying distance from point of 
interest, for an EPS

N = (# rain thresholds) x (# distance thresholds)     
x (# ensemble members)

single threshold



Spatial multi-event contingency table
(Atger, 2001)

Can also evaluate and compare forecasts in terms of 
Relative Value

Deterministic forecast
Ensemble prediction system



Scale separation methods
Measure error as a function of spatial scale
Examples:

• Wavelet decomposition (Briggs and Levine, 1997; Alvera-
Azcárate, 2004)

• Multiscale statistical properties (Zepeda-Arce et al., 2000; 
Harris et al., 2001)

• Discrete cosine transformation (Denis et al., 2002)

• Scale recursive estimation (Tustison et al., 2003)

• Intensity-scale verification approach (Casati et al., 2004)

$ Barbara Casati's talk this afternoon!



Multiscale statistical properties
(Harris et al., 2001)

Does a model produce the observed precipitation scale-
dependent variability, i.e. does is look like real rain?

Compare multiscale statistics for model and radar data

Power spectrum Structure function Moment scaling



Feature calibration and alignment 
(Hoffman et al., 1995; Nehrkorn et al., 2003)

Subjective evaluation of a spatial forecast may suggest 
"front moved too fast in the model" or "forecast low too 
far to the south", etc.

Need for an objective evaluation method that accounts for 
phase and amplitude errors

Feature calibration and alignment (FCA) strategy uses 
pattern matching of forecast field to analysis field to 
determine fields of phase, amplitude, residual errors

– Hoffman et al. (1995) – maximize spatial correlation

– Nehrkorn et al. (2003) – spectral variational techniques



Feature calibration and alignment 
(Hoffman et al., 1995; Nehrkorn et al., 2003)

Error decomposition

e = Xf(r) - Xv(r)

where Xf(r) is the forecast,    
Xv(r) is the verifying analysis, 
and r is the position.

e = ep + eb + er

where

ep = Xf(r) - Xd(r) phase error

eb = Xd(r) - Xa(r) local bias error

er = Xa(r) - Xv(r) residual error

Original forecast Xf(r) 500 mb analysis Xv(r)

Adjusted forecast Xa(r)

Forecast adjustment

Residual error er



Entity-based approach 
(Ebert and McBride, 2000)

When one or more features of interest are present in a 
forecast the spatial verification does not separate the 
performance for one feature from the performance for 
another.

Example: National scale QPF verification

Entity-based verification 
focuses only on features of 
interest (entities)

• Determines location errors
• Verifies properties of location-

corrected entities
• Decomposes error into location, 

amplitude, and pattern components



Entity-based approach 
(Ebert and McBride, 2000)

• Define entities using threshold (Contiguous Rain Areas)

• Horizontally translate the forecast until a pattern 
matching criterion is met:

– minimum total squared error between forecast and observations 

– maximum correlation

– maximum overlap

• The displacement is the vector difference between the 
original and final locations of the forecast.

Observed Forecast



Entity-based approach 
(Ebert and McBride, 2000)

1st CRA: 
Tropical 
Cyclone 
Chris



Entity-based approach 
(Ebert and McBride, 2000)

2nd CRA: 
Heavy rain 
system near 
Sydney



Entity-based approach 
(Ebert and McBride, 2000)

Distribution-oriented verification for entity properties



Entity-based approach 
(Ebert and McBride, 2000)

Error decomposition based on optimizing total squared error:

The total mean squared error (MSE) can be written as:

MSEtotal = MSEdisplacement + MSEvolume + MSEpattern

The difference between the mean square error before and after translation is 
the contribution to total error due to displacement,

MSEdisplacement =  MSEtotal – MSEshifted

The error component due to volume represents the bias in mean intensity,

where      and      are the mean forecast and observed values after the shift.

The pattern error, computed as a residual, accounts for differences in the fine 
structure of the forecast and observed fields,

MSEpattern = MSEshifted - MSEvolume

2)XF(MSEvolume −=

XF



Alternate error decomposition based on optimizing spatial correlation:

The total mean squared error (MSE) can be written as:

MSEtotal = MSEdisplacement + MSEvolume + MSEpattern

Murphy's (1995) decomposition of the MSE: 

where      and      are the mean forecast and observed values before the shift. 
Correcting the forecast location improves its correlation with the observations, 
ropt. Adding and subtracting ropt and rearranging,

Entity-based approach 
(Ebert and McBride, 2000)

2)XF(MSEvolume −=

2222 1 FFX s)r()rss()XF(MSE −+−+−=

)rr(ssMSE optXFntdisplaceme −= 2    

2    12    )ss()r(ssMSE XFoptXFpattern −+−=

XF



Entity-based approach 
(Ebert and McBride, 2000)

How do these two error decompositions compare to each 
other?

Comparison of CRA error decompositions for 24 h QPFs from 7 global and 
regional NWP models over Australia, 2000-2003.
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Entity-based approach 
(Ebert and McBride, 2000)

Event forecast classification

Select the two most important aspects of a useful forecast for an event, 
for example:

• Forecast location must be close to the observed location
• Predicted magnitude must be close to the observed

  
Forecast Magnitude 

  Too 
small 

Approx. 
correct* 

Too 
great 

Close Under-
estimate Hit Over-

estimate Displacement 
of forecast 

event Far Missed 
Event 

Missed 
Location 

False 
Alarm 

 
 

24h QPFs from BoM
regional model



Object-oriented approaches

• GOAL: A verification approach that is consistent with 
“eyeball” verification

• Diagnostic information that 
– Can be used to improve the forecasts 
– Provides useful information to decision makers

• Types of information
– Location
– Amplitude
– Size
– Shape

• Examples: Marzban and Sandgathe (U. Washington); 
Baldwin (NSSL); Bullock, Brown et al. (NCAR)



Example: 13 June 2000, 23Z, 6-h 
Collaborative Convective Forecast Product (CCFP) 

(Human generated forecast)

Translated and rotated 
shape:

POD = 0.52 Bias = 1.3

FAR = 0.60 CSI = 0.29

Translation: 0 km
Rotation: -10°°°°

Original shape:

POD = 0.37 Bias = 1.3

FAR = 0.71 CSI = 0.19



Cluster analysis approach 
(Marzban and Sandgathe)

• See talk later today (Marzban)
• Goal: Assess the agreement between fields using 

clusters identified using agglomerative hierarchical 
cluster analysis (CA)

• CA identifies clusters that generally agree with human 
visual interpretation

• Optimize clusters (and numbers of clusters) based on
– Binary images (x-y optimization)
– Magnitude images (x-y-p optimization)

• Compute Euclidean distance between clusters in forecast 
and observed fields (in x-y and x-y-p space)

– Evaluate significance using t-test



Cluster analysis approach 
(Marzban and Sandgathe)

Cluster example: MM5 
precipitation forecasts

8 clusters identified in x-y-p space



Object-oriented approach (Baldwin)
• See talk later this morning (Brooks/Baldwin)
• Goal: Measure and compare attributes of forecast and 

observed rain areas
• Use CRA-type approach to                                        

identify rainfall areas
• Measure various (11) attributes                                 

(area, mean and variance of precip
intensity, orientation angle, etc.)

• Measure multi-attribute “distance”                          
between forecast and observed areas

– Standardize attributes using LEPS
– Select distance threshold to identify                           

matches, misses and false alarms
• Summarize attributes and distances



Object-oriented approach (Baldwin)

F2 = false alarm

F1

O2

O3

O1 = missed event

Objects might “match” 
more than once…

If di* > dT then false alarm

If d*j > dT : missed event



Fcst_1

NCAR WRF 4km

Stage II radar ppt

Area=70000 km2

mean(ppt)=0.97

σ (ppt)= 1.26

∆corr(50)=1.17

∆corr(100)=0.99

∆corr(150)=0.84

θ(50)=173°

θ(100)=173°

θ(150)=173°

lat = 40.2°N

lon = 92.5°W

Fcst_2 Obs_1 Obs_2

Area=70000 km2

mean(ppt)=0.60

σ (ppt)= 0.67

∆corr(50)=0.36

∆corr(100)=0.52

∆corr(150)=0.49

θ(50)=85°

θ(100)=75°

θ(150)=65°

lat = 44.9°N

lon =84.5°W

Area=135000

mean(ppt)=0.45

σ (ppt)= 0.57

∆corr(50)=0.37

∆corr(100)=0.54

∆corr(150)=0.58

θ(50)=171°

θ(100)=11°

θ(150)=11°

lat = 39.9°N

lon = 91.2°W

Area=285000

mean(ppt)=0.32

σ (ppt)= 0.44

∆corr(50)=0.27

∆corr(100)=0.42

∆corr(150)=0.48

θ(50)=95°

θ(100)=85°

θ(150)=85°

lat = 47.3°N

lon = 84.7°W

Obs_2

Obs_1

Baldwin: Object Attributes



NCAR object-oriented approach

• See talks later today (Bullock, Gilleland, Brown)
• Define objects in forecast and observation field 

– Convolution/threshold approach

• Define characteristics of objects
– Shape, Location, Orientation angle, Precipitation intensity, 

“Ugliness”, etc.

• Merge objects in individual fields
• Match objects between fields

– Two approaches: Fuzzy Logic; Baddeley’s delta

• Characterize performance: examine object differences
• Summarize performance across a set of forecasts



NCAR object-oriented approach

AfBf

Cf
Df

Ao
Bo

Co
Do

Forecasts: 12-h 
WRF precipitation

Obs: Stage IV 
precipitation



NCAR object-oriented approach

AfBf

Cf
Df

Ao
Bo

Co
Do

Forecast Observed



Composite approach (Nachamkin)

• Talk yesterday afternoon
• Goal: Characterize distributions of errors from both a 

forecast and observation perspective
• Procedure:

– Identify events of interest in the forecasts
• Rainfall greater than 25 mm
• Event contains between 50 and 500 grid points

– Define a kernel and collect coordinated samples
• Square box
• 31x31 grid points (837x837 km for 27 km grid)

– Compare forecast PDF to observed PDF
– Repeat process for observed events



Composite approach: 
Collecting the Samples

Forecast event Observations

Collection kernel

x

Event center



Composite approach: 
Kernel grid-average precipitation

Average rain (mm) given an 
event was predicted

FCST-shade
OBS-contour

FCST-shade
OBS-contour
Average rain (mm) given an 

event was observed



Summary

• Standard methods provide basic information about 
performance of spatial forecasts, but are not diagnostic 
and may not provide information needed to improve the 
forecasts or to optimally use the forecasts

• Issues of scaling are still of concern but are generally 
ignored or only considered minimally

• Much progress! in the last 2 years 
– Event- or object-based approaches
– Fuzzy verification approaches
– Other alternative approaches (e.g., composite methods; new skill

measures)



The future?

• Evolving ideas about “What makes a ‘good’ forecast”
– Look at bigger picture
– Reliance on probability distributions

• Further development of diagnostic approaches
– Measure attributes of interest to users
– Application to other forecast elements

• Improved approaches for coping with
– Scaling issues
– Spatial correlations

• Application of approaches that provide information that is 
“operationally relevant”

• Incorporation of observation uncertainty
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