Composite-based Verification of Warm-Season Precipitation Forecasts from a Mesoscale Model

Jason Nachamkin Naval Research Laboratory, Monterey, CA

Variability

Composite Sampling

- Collect a narrowly defined, specific sample of events (reduces S)
- Summarize as much of the forecast space as possible (increases S)
- Verify directly in terms of the forecast and observed variables (distributions oriented)
 - Helps track S
 - Results are easily databased
 - Useful diagnostic tool

Composite Verification Method

Identify events of interest in the forecasts

•Rainfall greater than 25 mm

•Event contains between 50 and 500 grid points

•Define a kernel and collect coordinated samples

•Square box

•31x31 grid points (837x837 km for 27 km grid)

•Compare forecast PDF to observed PDF

•Repeat process for observed events

Collecting the Samples

Collection kernel

CONUS Precipitation Study

- All 24-hour forecasts from 15 April 7 September
- COAMPS[™] operational forecasts
 - 27 km horizontal grid spacing
 - Nonhydrostatic
 - Kain-Fritsch cumulus parameterization
 - Rutledge&Hobbs microphysics with graupel (Schmidt)
 - MVOI data assimilation, 6-hour update frequency
- Verification data: River Forecast Center 4 km rain gauge analysis remapped to model grid

Kernel Grid-Average Precipitation

Model-predicted events are phase-shifted, and the model has a significant under-estimation problem when an event is observed.

Daily Forecast Frequencies

Composite Contingent on Forecast

Percentage of Parameterized Precipitation

 Missed events contain high percentages of parameterized precipitation

•North-south gradient related to phase shift in FCST events

Quantifying Error

Forecast

Observations

Multi-scale Sample Bias

Mistral Statistics

Precipitation Event Statistics

Signal-to-noise ratio smaller for precipitation forecasts
Variability does not decrease despite event superposition

Interpreting the Scores

Standard deviations increase towards event center

•Every event is different

Mistral Speed Distribution

Conclusions

- The composite method is a simple way to directly verify meteorological variables.
- Data are easily databased.
- The sample paradox suggests multiple scales should be verified.
 - Small sample grids sensitive, scores saturate easily
 - Large grids less sensitive but scores less precise
- Future work should focus on probabilistic statistics based on attributes.

