

Norwegian Meteorological Institute met.no

Methods for verifying quantile forecasts

John Bjørnar Bremnes

Example

Overview

- Reliability
- Sharpness
- Refinement
- Ranking

An example of forecasting wind speed is used throughout

- One station
- 239 cases for the lead time used

Reliability (calibration)

Are the quantile probabilities proper/valid?

Statistic

Fractions of observations below each quantile

Example

	5%	25%	50%	75%	95%
Torungen lighthouse	.083	.227	.541	.762	.923

Hypothesis tests

Does the forecast model produce reliable quantiles?

Each quantile separately

- $H_0: p_{true} = p$ (true prob. = quantile prob.)
 - binomial test (preferable) or χ^2 -test
 - R: binom.test(), chisq.test(), prop.test()

p-values are appropriate for presenting results

- the smaller the p-value, the stronger the evidence that the model is unreliable

All quantiles simultaneously

- I. $H_0: p_{true,i} = p_i$ for all quantiles *i*
- II. $H_0: p_{true,i} = p_i$ for all intervals *i*
 - The p's are interval probabilities
 - Intervals formed by (between) the quantiles
 - Number of intervals = number of quantiles + 1
- χ^2 -tests appropriate for both tests
- 2nd test preferable (no overlapping classes)
- Different p-values!

Example

Statistics

	5%	25%	50%	75%	95%
Torungen lighthouse	.083	.227	.541	.762	.923

P-values

	5%	25%	50%	75%	95%	ALL*
Torungen lighthouse	.057	.493	.298	.732	.120	.008

*) p-value based on intervals

Reliability -- p-values

Remarks

- Decision making
 - Choose test(s)
 - Fix significance level
 - Require p-value(s) above this
- χ^2 -tests are approximate
 - Thumb rule: expected counts in each cell should be greater than 5 (conservative)

Conditional reliability

- Previous methods only check <u>overall</u> reliability (unconditional reliability)
- Quantile probabilities should be valid for <u>all</u> forecasts
- Does the reliability depend on
 - Forecasted value?
 - Lead time, time, season, ...?

Stratification of data

- Sort forecasts by e.g. value (for each quantile prob.)
- Group data (e.g. roughly equal sizes)
- Compute statistics for each group

Example

		5%	25%	50%	75%	95%
Quantile value	Low	.117	.333	.550	.767	.950
	Medium	.049	.197	.541	.754	.934
	High	.083	.150	.533	.767	.883

Hypothesis tests

Each quantile separately (by value)

I.
$$H_0: p_{low} = p_{med} = p_{high}$$

II. $H_0: p_{low} = p_{med} = p_{high} = p$ (quantile prob.)

- χ^2 -tests can be used in both cases
 - R: prop.test()
- Test II is most complete/relevant
- Same principle for testing all quantiles simultaneously

Example

Statistics

		5%	25%	50%	75%	95%
Quantile value	Low	.117	.333	.550	.767	.950
	Medium	.049	.197	.541	.754	.934
	High	.083	.150	.533	.767	.883

P-values

	5%	25%	50%	75%	9 5%
l (homogenity)	.404	.045	.983	.983	. 359
ll (joint)	.071	.096	.735	.980	.115
unconditional	.057	.493	.298	.732	.120

Regression based tests (conditional reliability)

- Logistic regression for each quantile prob.

$$\log\left(\frac{p_{true}}{1-p_{true}}\right) = \alpha_0 + \alpha_1 q_p$$
 p-th quantile
H₀: $\alpha_1 = 0$ (no trend)

 $H_0: \alpha_1 = 0 \text{ and } \alpha_0 = \log(p/1-p)$ (no trend and proper prob.)

Likelihood ratio tests?

Sharpness

Probability mass should be distributed on short interval(s)

Several quantiles

- Average length(s) of intervals formed by pair(s) of quantiles
 - Ex.: average length of 50% and 90% intervals
 - Bimodality is often penalised too much
 - Empirical distributions provide additional information
 - Single number would be useful for decision making

Single quantile

- Variation as measured by standard deviation or range (as for deterministic forecasts)

Refinement / Variation

Information about uncertainty is less important if it is constant

Measures

- Standard deviation (or range) of interval lengths
- Deviation from climate quantiles?

Ranking quantile forecasts

Score functions

- Discrete ranked probability score (RPS) is not suitable
 - Sharpness is not given credit
- Make complete CDFs (and PDFs?) of the quantiles and use CRPS or other scoring rules (not easy)
 - Approximate CRPS by integrating only over the range of the quantiles

Reliability and sharpness

- Require reliability at a given significance level and rank reliable models by average interval length(s)
- Most suitable in the process of making forecast models

Summary

Reliability

- Hypothesis tests useful
- Important to also assess cond. reliability

Sharpness

- Length of forecast intervals

Ranking models important problem - Scoring rules useful