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Probabilistic forecasts

univariate, continuous or mixed discrete con-

tinuous predictand X

probabilistic forecast in the form of a predic-

tive cumulative distribution function (CDF)

F (x) = P (X ≤ x), x ∈ �

or a predictive probability density function

(PDF)
f(x), x ∈ �

examples include

raw ensemble forecasts of temperature, pres-

sure, precipitation, wind speed, . . .

postprocessed ensemble forecasts (ensemble

smoothing, BMA, EMOS)

statistical short-range forecasts of wind speed

at wind energy sites



What is a good probabilistic forecast?

ECMWF Workshop on Predictability 1997:

. . . the primary purpose of the ensemble pre-
diction system is to provide and estimate the
probability density function (pdf) of the atmo-
spheric state. Such a pdf should possess two
properties:

1. statistical consistency (or reliability)

2. usefulness, that is, the pdf should provide
more accurate information about the pre-
dicted atmospheric state than a reference
pdf based either on climatology or on a
combination of deterministic (operational)
forecasts and statistical data.



Calibration and sharpness

calibration:

statistical compatibility between the predictive

distributions and the observations

joint property of the forecasts and the obser-

vations

sharpness:

refers to the spread of the predictive distribu-

tions

property of the forecasts only

goal of probabilistic forecasting is to maximize

sharpness subject to calibration



Game-theoretic framework

two players, nature and forecaster

prequential scenario: times (cases, locations,

. . . ) t = 1,2, . . .

nature chooses a distribution Gt

forecaster chooses a distribution Ft

the observation or verification xt is a ran-

dom draw from Gt

verification on the basis of the (Ft, xt)



Example

at time t, nature chooses

Gt = N (µt,1) where µt ∼ N (0,1)

perfect forecaster

Ft = Gt = N (µt,1) for all t

climatological forecaster

Ft = N (0,2) for all t

Tom Hamill’s forecaster

Ft =





N
(
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2,1
)

with probability 1
3

N
(
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1
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)
with probability 1
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N
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13
10
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with probability 1

3



Notions of calibration

probabilistic calibration

1

T

T∑

t=1

Gt (F
−1
t (p)) −→ p for all p ∈ (0,1)

exceedance calibration

1

T

T∑

t=1

G−1
t (Ft(x)) −→ x for all x

marginal calibration

1

T

T∑

t=1

(Gt(x) − Ft(x)) −→ 0 for all x

perfect forecaster: PEM

climatological forecaster: PEM

Hamill’s forecaster: P∗EM



Verification tools

verification based on (Ft, xt)

Assessing probabilistic calibration

probability integral transform or PIT (Rosen-

blatt 1952; Dawid 1984)

pt = Ft(xt) ∈ [0,1]

PIT histogram: histogram of the pt

PIT histogram uniform ⇐⇒ prediction inter-

vals at all levels have proper coverage

analogue of the verification rank histogram

for ensemble forecasts



Probability Integral Transform
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Climatological Forecaster

Probability Integral Transform
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Assessing marginal calibration

addresses compatibility between verifying cli-

matology and forecast climatology

histogram of the verifications xt

for each t, draw a random number yt from the

predictive distribution Ft

histogram of the yt

marginal calibration table compares 5%, 50%

and 95% percentiles of the histograms

5% 50% 95%

Verifications −2.37 0.01 2.31

Perfect forecaster −2.28 0.00 2.30
Climatological forecaster −2.34 0.02 2.37
Hamill’s forecaster −2.59 0.02 2.64



Assessing sharpness

average width of 90% central prediction in-

terval

Ave Width

Perfect forecaster 3.29
Climatological forecaster 4.65
Hamill’s forecaster 3.62



Scoring rules

a scoring rule

S(F, x)

assigns a numerical score to the forecast/ob-

servation pair (F, x)

negatively oriented: we consider scores to be

penalties

the smaller the better: the forecaster aims

to minimize the average score,

1

T

T∑

t=1

S(Ft, xt)

diagnostic approach: scoring rules address

both calibration and sharpness, yet form one

facet of forecast verification only



Propriety

suppose that I provide probabilistic forecasts

of a real-valued quantity X for your company

my best assessment: G

my actual forecast: F

verification: x

my penalty: S(F, x)

you expect me to quote F = G; however, will

I do so?

only if the expected score is minimized if I

quote F = G, that is if

EG S(G, X) ≤ EG S(F, X)

for all F and G

a scoring rule with this property is called proper

all scoring rules discussed hereinafter are proper



Scoring rules for PDF forecasts

ignorance score (Good 1952; Roulston and

Smith 2002)

IgnS(f, x) = − log f(x)

specifically,

IgnS(N (µ, σ2), x) =
1

2
ln(2πσ2) +

(x − µ)2

2σ2

quadratic score and spherical score (Good

1971)

QS(f, x) = − f(x) +
1

2

∫ ∞

−∞
(f(y))2 dy

SphS(f, x) = − f(x)

/(∫ ∞

−∞
(f(y))2 dy

)1/2



Scoring rules for predictice CDFs

the continuous ranked probability score or

CRPS has lately attracted attention

origins unclear (Matheson and Winkler 1976;

Staël von Holstein 1977; Unger 1985)

CRPS(F, x) =

∫ ∞

−∞
(F (y) − 1(y ≥ x))2 dy

integral of the Brier scores for probability fore-

casts at all possible threshold values y

specifically,

CRPS
(
N (µ, σ2), x

)

= σ

(
x − µ

σ
erf

(
x − µ√

2σ2

)
+ 2ϕ

(
x − µ

σ

)
− 1√

π

)

grows linearly in |x − µ|, in contrast to the ig-

norance score



using results of Székely (2003)

CRPS(F, x) =

∫ ∞

−∞
(F (y) − 1(y > x))2 dy

= EF |X − x| − 1

2
EF

∣∣∣X − X ′∣∣∣

where X and X ′ are independent random vari-

ables, both with distribution F

generalizes the absolute error to which it

reduces if F is a deterministic (point) forecast

can be reported in the same unit as the ver-

ifications

provides a direct way of comparing deter-

ministic and probabilistic forecasts

forms a special case of a novel and very general

type of score, the energy score (Gneiting and

Raftery 2004)



Scores for quantile and interval forecasts

consider interval forecasts in the form of the

central (1 − α) × 100% prediction intervals

equivalent to quantile forecasts at the levels
α
2 × 100% and (1 −

α
2 ) × 100%

α = 0.10 corresponds to the 90% central pre-

diction interval and quantile forecasts at the

5% and 95% level

scoring rule Sα(l, u; x) if the interval forecast

is [l, u] and the verification is x

interval score

Sα(l, u;x) =





2α(u − l) + 4(l − x) if x < l

2α(u − l) if x ∈ [l, u]

2α(u − l) + 4(x − u) if x > u

fixed penalty proportional to width of interval

additional penalty if the verification falls out-

side the prediction interval



Case study:
Short-range forecasts of wind speed

wind power: the world’s fastest growing en-

ergy source; clean and renewable

Stateline wind energy center: $300 million

wind project on the Vansycle ridge at the

Oregon-Washington border

2-hour forecasts of hourly average wind speed

at the Vansycle ridge

joint project with 3TIER Environmental Fore-

cast Group, Inc.

data collected by Oregon State University for

the Bonneville Power Administration





Forecast techniques

persistence forecast as reference standard:

V̂t+2 = Vt

classical approach (Brown, Katz and Murphy

1984): autoregressive (AR) time series tech-

niques

our approach (Gneiting, Larson, Westrick, Gen-

ton and Aldrich 2004) is spatio-temporal:

regime-switching space-time (RST) method





Regime-switching space-time (RST)

technique

merges meteorological and statistical expertize

model formulation is parsimonious, yet takes

account of all the salient features of wind

speeds: alternating atmospheric regimes, tem-

poral and spatial autocorrelation, diurnal and

seasonal non-stationarity, conditional hetero-

scedasticity and non-Gaussianity

regime-switching: identification of distinct

forecast regimes

spatio-temporal: utilizes geographically dis-

persed meteorological observations in the vicin-

ity of the wind farm

fully probabilistic: provides probabilistic fore-

casts in the form of predictive CDFs
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Verification

evaluation period: May–November 2003

deterministic forecasts: RMSE, MAE

predictive CDFs: PIT histogram, marginal

calibration table, CRPS

interval forecasts (90% central prediction

interval): coverage, average width, interval

score (IntS)

reporting scores month by month allows for

significance tests

for instance, the RST forecasts had a lower

RMSE than the AR forecasts in May, June,

. . . , November

under the null hypothesis of equal skill this will

happen with probability p =
(
1
2

)7
= 1

128 only



RMSE (m· s−1) May Jun Jul Aug Sep Oct Nov

Persistence 2.14 1.97 2.37 2.27 2.17 2.38 2.11
AR 2.01 1.85 2.00 2.03 2.03 2.30 2.08
RST 1.75 1.56 1.70 1.78 1.77 2.07 1.88

MAE (m· s−1) May Jun Jul Aug Sep Oct Nov

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51
AR 1.54 1.38 1.50 1.54 1.53 1.67 1.53
RST 1.32 1.18 1.33 1.31 1.36 1.48 1.37

CRPS (m· s−1) May Jun Jul Aug Sep Oct Nov

AR 1.11 1.01 1.10 1.11 1.10 1.22 1.10
RST 0.96 0.85 0.95 0.95 0.97 1.08 1.00



Probability Integral Transform
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5% 50% 95%

Verifications 1.56 6.34 15.62
AR 0.92 6.64 14.95
RST 1.30 6.21 15.12



Cov May Jun Jul Aug Sep Oct Nov

AR 91.1% 91.7% 89.2% 91.5% 90.6% 87.4% 91.4%
RST 92.1% 89.2% 86.7% 88.3% 87.4% 86.0% 89.0%

Width May Jun Jul Aug Sep Oct Nov

AR 6.98 6.22 6.21 6.38 6.37 6.40 6.78
RST 5.93 4.83 5.14 5.22 5.15 5.45 5.46

IntS May Jun Jul Aug Sep Oct Nov

AR 1.74 1.64 1.77 1.75 1.74 2.04 1.86
RST 1.52 1.29 1.41 1.50 1.50 1.83 1.64



Technical reports

www.stat.washington.edu/tilmann

Gneiting, T. and A. E. Raftery (2004)

Strictly proper scoring rules, prediction,

and estimation∗

Technical Report no. 463, Department of

Statistics, University of Washington

Gneiting, T., K. Larson, K. Westrick, M. G.

Genton and E. Aldrich (2004)

Calibrated probabilistic forecasting at the

Stateline wind energy center: The regime-

switching space-time (RST) method

Technical Report no. 464, Department of

Statistics, University of Washington

∗Introduces scores as positively oriented rewards rather
than negatively oriented penalties


