Verification of Rare Extreme Events

Dr. David B. Stephenson¹, Dr Barbara Casati, Dr Clive Wilson

> ¹Department of Meteorology University of Reading www.met.rdg.ac.uk/cag

- 1. Definitions and questions
- 2. Eskdalemuir precipitation example
- 3. Results for various scores

WMO verification workshop, Montreal, 13-17 Sep 2004

What is an extreme event?

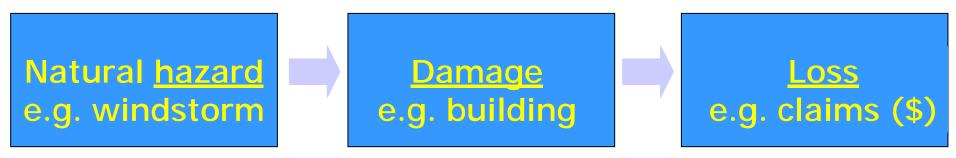
Different definitions:

- Maxima/minima
- Magnitude
- Rarity
- Severity

"Man can believe the impossible, but man can never believe the improbable." - Oscar Wilde

Gare Montparnasse, 22 October 1895

What is a severe event?



Risk=p(loss)=p(hazard) X vulnerability X exposure

Severe events (extreme loss events) caused by:

- <u>Rare</u> weather events
- Extreme weather events
- <u>Clustered</u> weather events (e.g. climate event)

→ "Rare and Severe Events" (RSE) – Murphy, W&F, 6, 302-307 (1991)

Sergeant John Finley's tornado forecasts 1884

Percentage Correct=96.6%!!

Gilbert (1884) F=No → 98.2%!!

Peirce (1884) PSS=H-F

O=Y

28

23

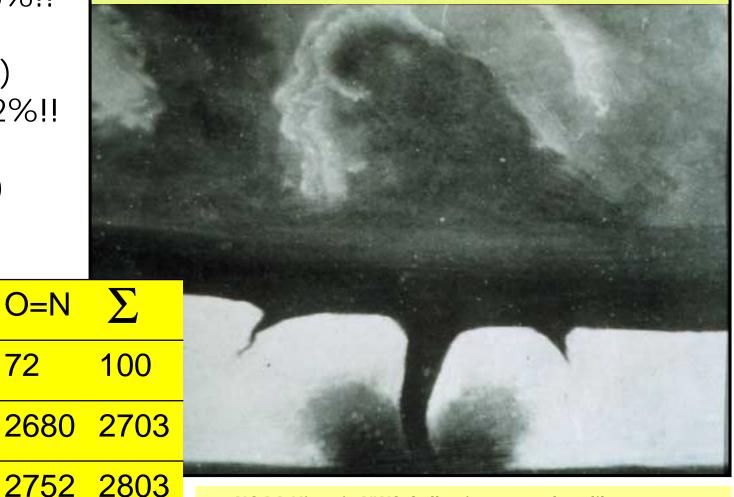
51

F=Y

F=N

72

Oldest known photograph of a tornado 28 August 1884 22 miles southwest of Howard, South Dakota



NOAA Historic NWS Collection www.photolib.noaa.gov

How to issue forecasts of rare events

• Let {X=0/1} when the event/non-event occurs:

[probability of event p=Pr(X=1) (base rate) is small]

0

0

0

0

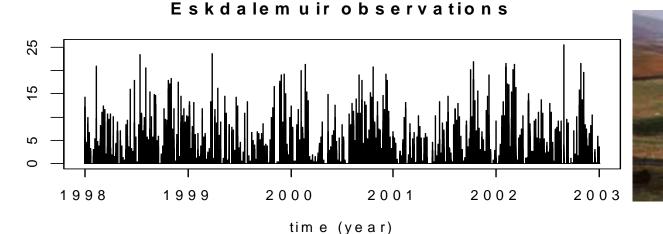
- Ideally one should issue probability forecasts {f}:
 0.1 0.2 0.3 0.6 0.5 0.1 0.3 0.4 0.6 ...
- Generally forecaster or decision-maker invokes a threshold to produce deterministic forecasts {Y=0/1}:
 0 0 0 1 1 0 0 0 1 ...

A. Murphy, "Probabilities, Odds, and Forecasts of Rare Events", Weather and Forecasting, Vol. 6, 302-307 (1991)

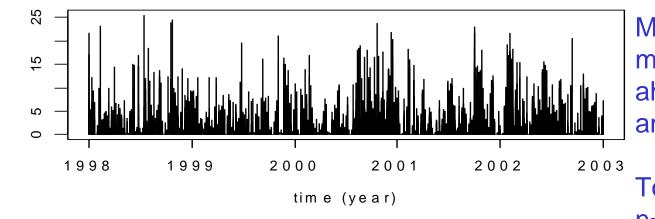
Some important questions ...

- Which scores are the best for rare event forecasts?
 PC, PSS, TS, ETS, HSS, OR, EDS
- Can rare event scores be improved by hedging?
- How much true skill is there in forecasts of extreme events?
- Are extreme events easier to forecast than small magnitude events? Does skill →0 as base rate →0?
- Others? Please let's discuss them!

Time series of the 6 hourly rainfall totals



Eskdalem uir T+6 forecasts

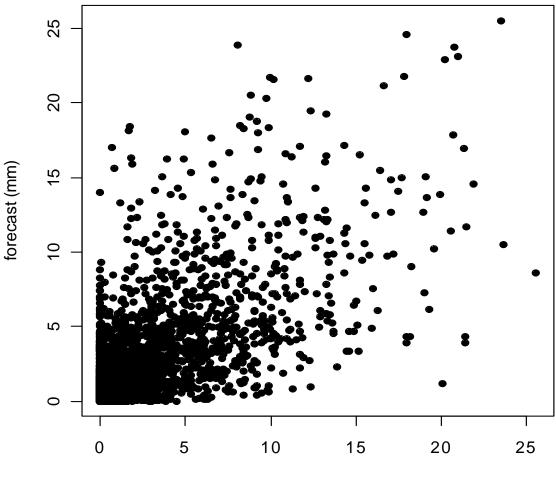


Met Office mesoscale model forecasts of 6h ahead 6h precipitation amounts (4x times daily)

Total sample size n=6226

precipitation (mm)

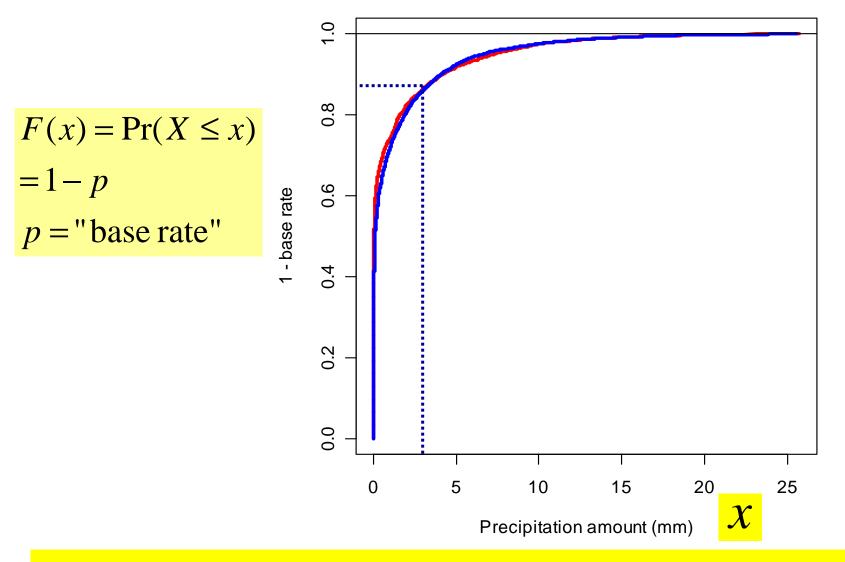
Scatter plot of forecasts vs. observations



observation (mm)

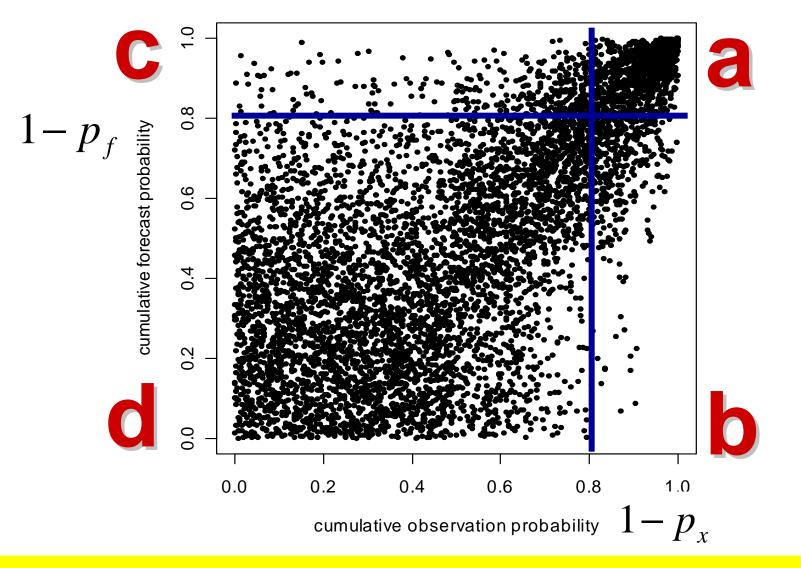
→ some positive association between forecasts and observations

Empirical Cumulative Distribution F(x)=1-p



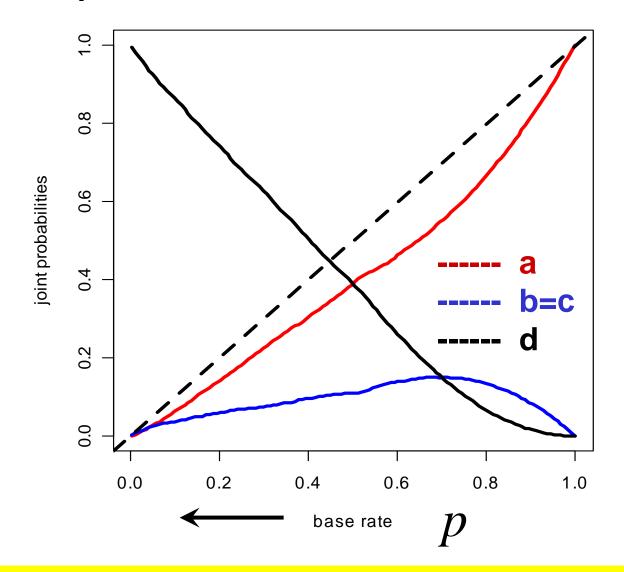
 \rightarrow can use E.D.F. to map values onto probabilities (unit margins)

Scatter plot of empirical probabilities



 \rightarrow note dependency for extreme events in top right hand corner

Joint probabilities versus base rate



 \rightarrow As base rate tends to 0, counts b=c>a \rightarrow 0 and d \rightarrow 1

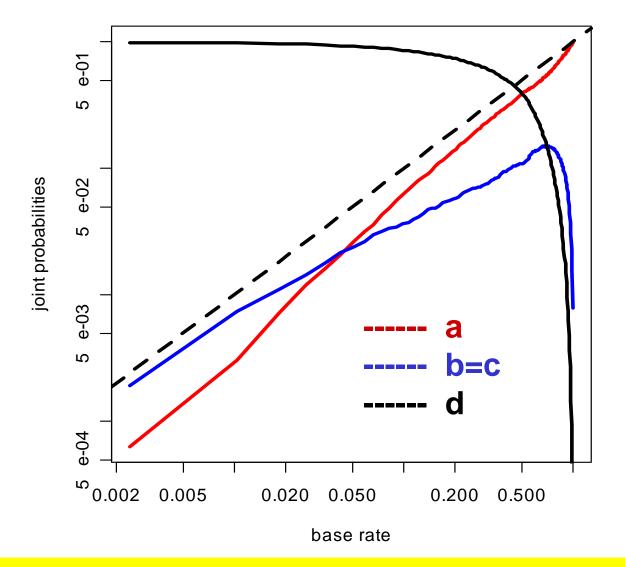
2x2 binary event asymptotic model

	Obs=Yes	Obs=No	Marginal Σ
Fcst=Yes	a=pH	b=p(B-H)	a+b=pB
Fcst=No	с=р(1-Н)	d=1-p(1+B-H)	c+d=1-pB
Marginal S	a+c=p	b+d=1-p	1

p = prob. of event being observed (base rate)B = forecast bias (B=1 for unbiased forecasts)

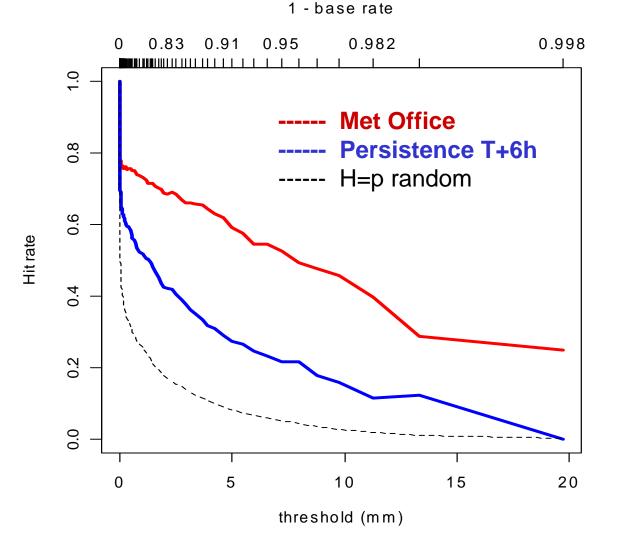
H = hit rate → 0 as p→0 (*regularity* of ROC curve) so $H \sim hp^k$ as p→0 (largest hit rates when k>0 is small) (random forecasts: H=Bp so h=B and k=1)

Joint probabilities vs. base rate (log scale)



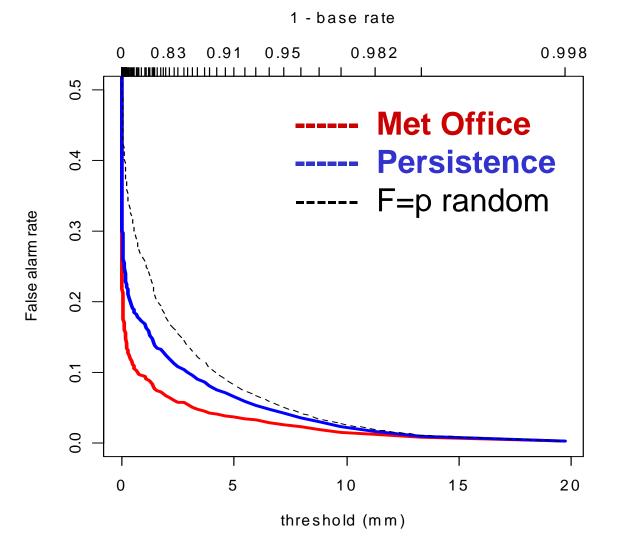
 \rightarrow note power law behaviour of a and b=c as function of base rate

Hit rate as function of threshold



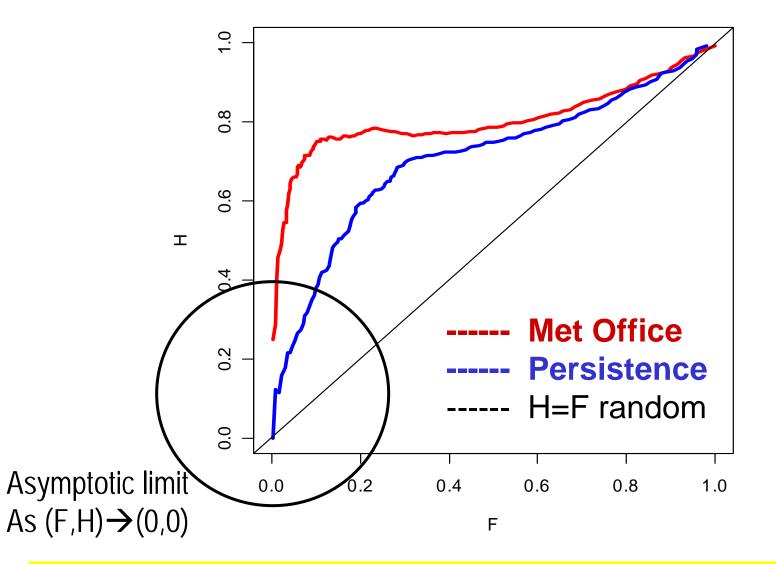
→ Both Met Office and persistence have more hits than random

False Alarm Rate as a function of threshold



 \rightarrow Both forecast false alarm rates converge to F=pB as p \rightarrow 0

ROC curve (Hit rate vs. False Alarm rate)



 \rightarrow ROC curves above H=F no-skill line and converge to (0,0)

Proportion correct

$$PC = a + d$$

~ 1- p(1+B) \rightarrow 1 as $p \rightarrow 0$

- perfect skill for rare events!!
- only depends on B not on H!

➔ pretty useless for rare event forecasts!

Proportion correct versus threshold

1 - base rate

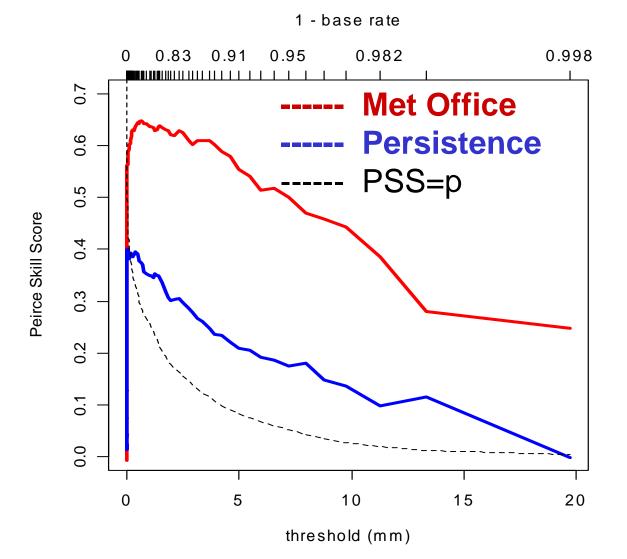
0.982 0.998 0.83 0.91 0.95 0 1.0 0.9 Proportion Correct 0.8 0.7 **Met Office Persistence** 0.6 PC=1-2p random 0.5 0 5 10 15 20 threshold (mm)

 \rightarrow PC goes to 1 (perfect skill) as base rate p \rightarrow 0

Peirce Skill Score (True Skill Statistic) PSS = H - F $\sim hp^{k} - Bp \rightarrow \begin{cases} hp^{k} \text{ for } k < 1\\ (h - B) p \text{ for } k = 1\\ - pB \text{ for } k > 1 \end{cases}$

- tends to zero for vanishingly rare events
- equals zero for random forecasts (h=B k=1)
- when k<1, PSS→H and so can be increased by overforecasting (Doswell et al. 1990, W&F, 5, 576-585.)

Peirce Skill Score versus threshold



 \rightarrow PSS tends to zero (no-skill) as base rate p \rightarrow 0

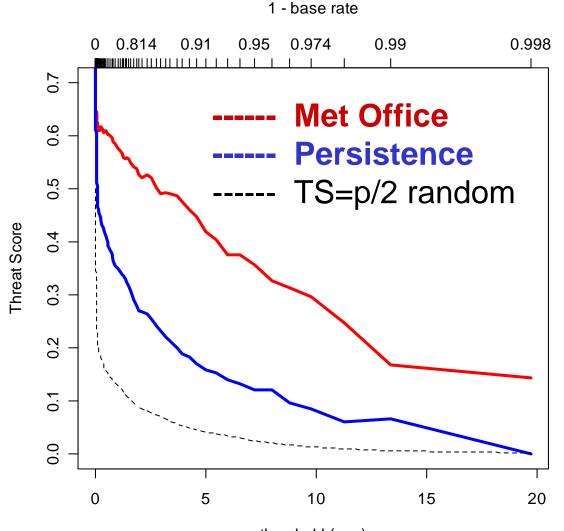
Threat Score (Gilbert Score)

$$TS = \frac{a}{a+b+c}$$

~ $\frac{hp^{k}}{1+B-hp^{k}} \rightarrow 0 \text{ as } p \rightarrow 0$

- tends to zero for vanishingly rare events
- depends explicitly on the bias B (Gilbert 1884; Mason 1989; Schaefer 1990)

Threat Score versus threshold



threshold (mm)

 \rightarrow TS tends to zero (no-skill) as base rate p \rightarrow 0

Brief history of threat scores

• Gilbert (1884) - "ratio of verification" (=TS)

"ratio of success in forecasting"(=ETS)

- Palmer and Allen (1949) "threat score" TS
- Donaldson et al. (1975) "critical success index"(=TS)
- Mason (1989) base rate dependence of CSI(=TS)
- Doswell et al. (1990) $HSS \rightarrow 2TS/(1+TS)$
- Schaefer (1990) GSS(ETS)=HSS/(2-HSS)
- Stensrud and Wandishin (2000) "correspondence ratio"
- Threat score ignores counts of d and so is strongly dependent on the base rate. ETS tries to remedy this problem.

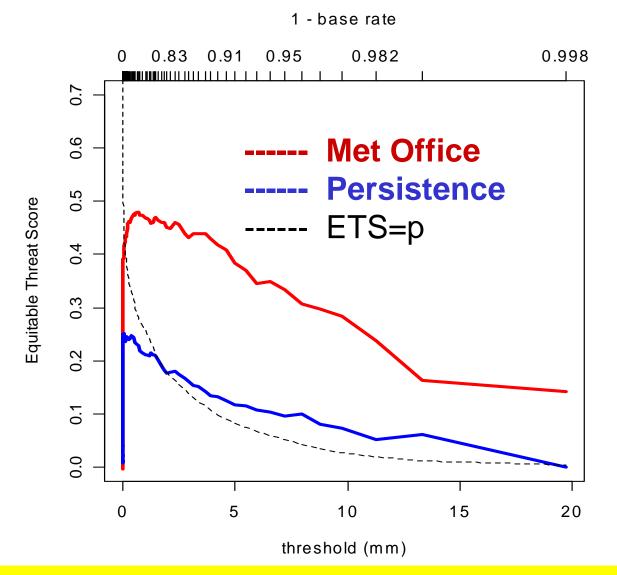
Equitable threat Score (Gilbert Skill Score)

$$ETS = \frac{a - a_r}{a + b + c - a_r}$$

~ $\frac{hp^k - pB}{1 + B - hp^k - pB} \rightarrow \frac{PSS}{1 + B}$ as $p \rightarrow 0$

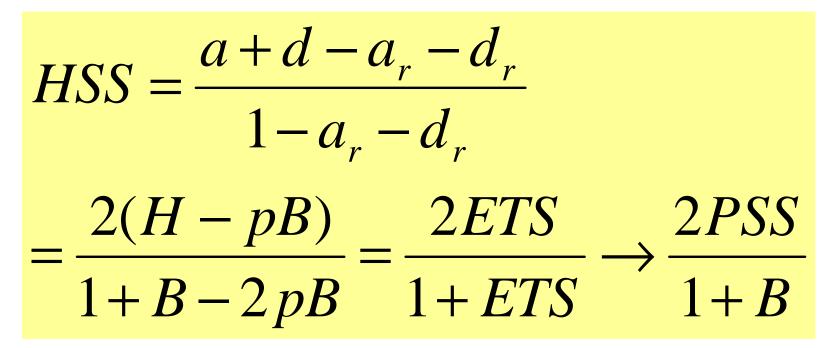
- tends to zero for vanishingly rare events
- related to Peirce Skill Score and bias B

Equitable Threat Score vs. threshold



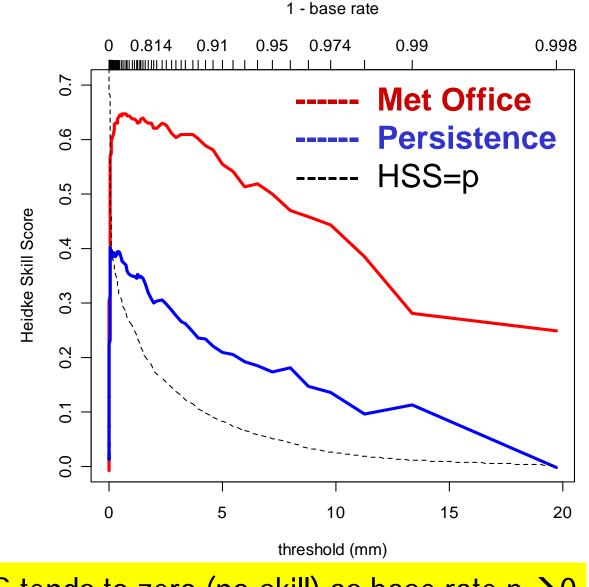
 \rightarrow ETS tends to zero as base rate p \rightarrow 0 but not as fast as TS

Heidke Skill Score

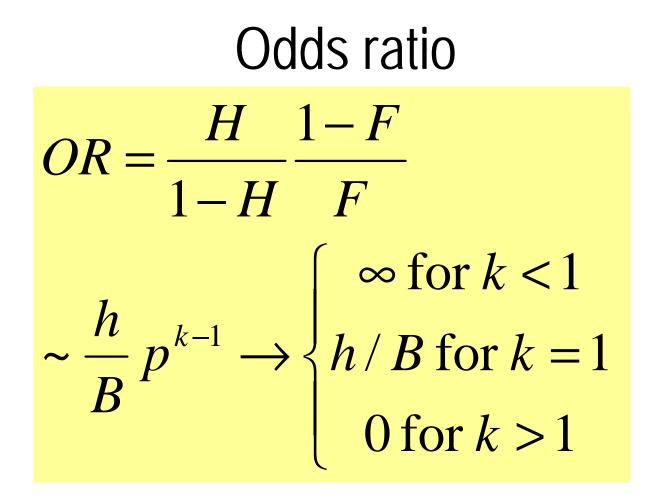


- tends to zero for vanishingly rare events
- advocated by Doswell et al. 1990, W&F, 5, 576-585
- ETS is a simple function of HSS and both these are related to the PSS and the bias B.

Heidke Skill Score versus threshold



 \rightarrow HSS tends to zero (no-skill) as base rate p \rightarrow 0



- tends to different values for different k (not just 0 or 1!)
- explicitly depends on bias B

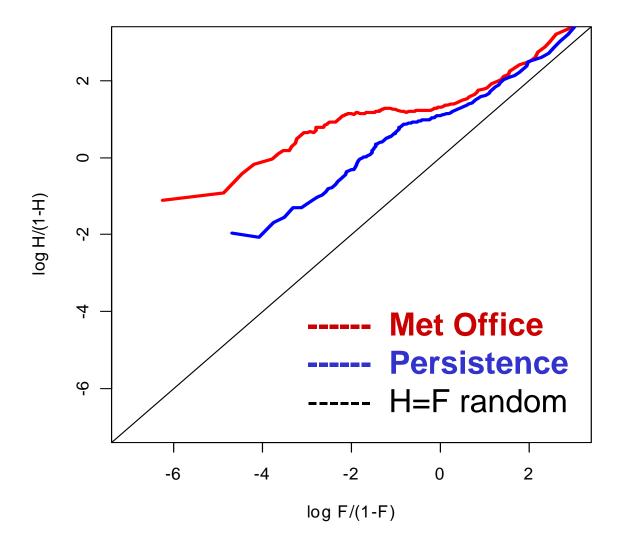
Log odds ratio versus threshold



threshold (mm)

 \rightarrow Odds ratio for these forecasts increases as base rate p \rightarrow 0

Logistic ROC plot



→ Linear behaviour on logistic axes – power law behaviour

Extreme Dependency Score

S. Coles et al. (1999)

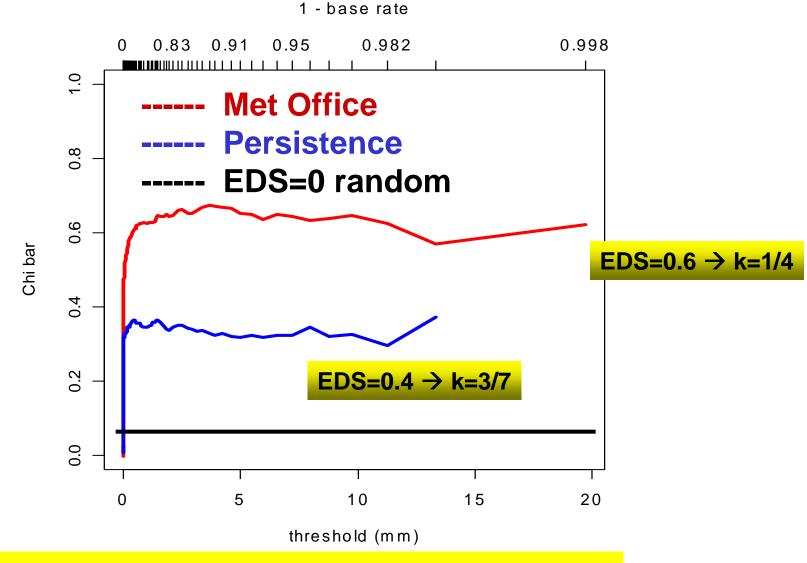
Dependence measures for Extreme Value Analyses,

Extremes, 2:4, 339-365.

$$EDS = \frac{2\log(a+c)}{\log(a)} - 1$$
$$\sim \frac{1-k}{1+k} \text{ as } p \to 0$$

- does not tend to zero for vanishingly rare events
- not explicitly dependent on bias B
- measure of the dependency exponent: k=(1-EDS)/(1+EDS)

Extreme Dependency Score vs. threshold



 \rightarrow strikingly constant non-zero dependency as p \rightarrow 0

Hedging by random underforecasting

	Obs=Yes	Obs=No	Marginal Σ
Fcst=Yes	a(1-f)	b(1-f)	(a+b)(1-f)
Fcst=No	c+af	d+bf	c+d+(a+b)f
Marginal Σ	a+c=p	b+d=1-p	1

Underforecasting by random reassignment causes scores to:

- Increase proportion correct (see Gilbert 1884)
- No change odds ratio, extreme dependency score
- Decrease all other scores that have been shown

Hedging by random overforecasting

	Obs=Yes	Obs=No	Marginal Σ
Fcst=Yes	a+cf	b+df	(a+b)+f(c+d)
Fcst=No	c(1-f)	d(1-f)	(c+d)(1-f)
Marginal S	a+c=p	b+d=1-p	1

Overforecasting by random reassignment causes scores to:

- Increase Hit Rate, False Alarm Rate
- No change odds ratio, extreme dependency score
- Decreased magnitude PC, PSS, HSS, ETS
- Other: TS?

→ Compare with C. Marzban (1998), W&F, 13, 753-763.

Conclusions

- Which scores are the best for rare event forecasts?
 EDS, Odds ratio, ... (PSS, HSS, ETS→0!)
- Can rare event scores be improved by hedging?
 Yes (so be very careful when using them!)
- How much true skill is there in forecasts of extreme events?
 Quite a bit!
- Are extreme events easier to forecast than small magnitude events? skill → 0?
 Perhaps yes there is extreme dependency

Some future directions

- Methods to infer rare event probability forecasts from ensemble forecasts
- Methods to verify probabilistic rare event forecasts (not just Brier score!)
- Methods for pooling rare events to improve verification statistics
- Other?

Many ministers rely heavily on groups of specialist advisers

www.met.rdg.ac.uk/cag/forecasting

The End

2x2 table for random binary forecasts

	Obs=Yes	Obs=No	Marginal sum
Fcst=Yes	a=p ² B	b= p(1-p)B	a+b=pB
Fcst=No	c=p-p ² B	d=1-p(1+B-pB)	c+d=1-pB
Marginal sum	a+c=p	b+d=1-p	1

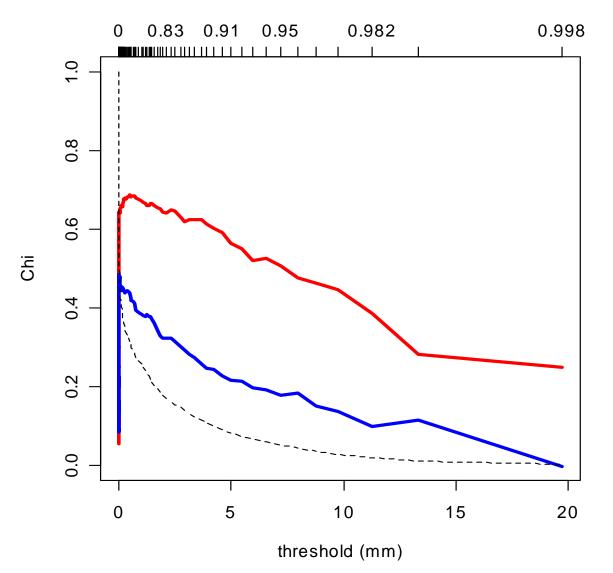
- p = prob. of event being observed (base rate)
- B = forecast bias (B=1 for unbiased forecasts)
- H=Bp=F (h=B and k=1)

Summary

- Proportion Correct and Heidke Skill Score tend to 1 for vanishingly rare events
- Peirce Skill Score, Threat Score and Equitable Threat Score all tend to 0 for vanishingly rare events
- All these scores can be improved by underforecasting the event (reducing B)
- There is redundancy in the scores: HSS~PC and ETS~PSS/(1+B)
- The odds ratio and Extreme Dependency Score give useful information on extreme dependency of forecasts and observations for vanishingly rare events

Chi measure as function of threshold

1 - base rate



Plan

 Definition of an extreme event forecast Binary rare deterministic (o,p) obtainable from (x,y)

Or (x,F(x)) by thresholding rx,ry or rx.

- 2. The Finley example and some rare event scores
- 3. The Eskdalemuir example problem with scores

Some suggestions for future scores?

Extremes=low skill noise OR causal events?

Verification methods for rare event literature

- Gilbert (1884)
- Murphy (19??)
- Schaeffer (19??)
- Doswell et al. (19??)
- Marzban (19??)
- ... a few others (but not many!)

Types of forecast

O=observed value (predictand) F=predicted value (predictor)

Types of predictand:

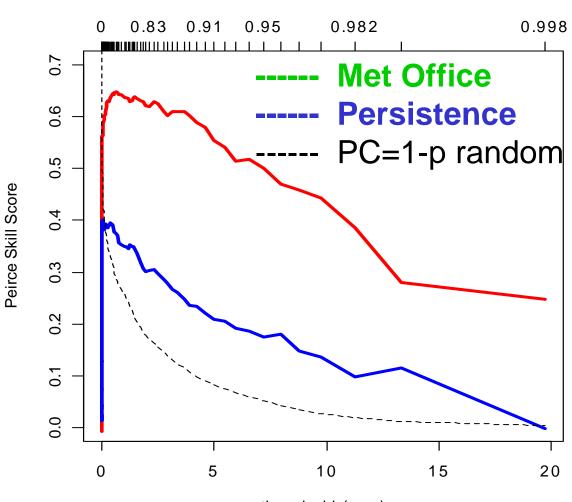
- Binary events (e.g. wet/dry, yes/no)
- Multi-categorical events (>2 categories)
- Continuous real numbers
- Spatial fields etc.

Types of predictor:

- F is a single value for O (deterministic/point forecast)
- F is a range of values for O (interval forecast)
- F is a probability distribution for O (**p**robabilistic forecast)

Peirce Skill Score versus threshold

1 - base rate



threshold (mm)

 \rightarrow PSS tends to zero (no-skill) as base rate p \rightarrow 0