

United States National Weather Service Verification Program

International Verification Workshop

Equitable Skill Score Use in the U.S. National Weather Service

Chuck Kluepfel (<u>Charles.Kluepfel@noaa.gov</u>) September 15, 2004

Contingency Tables

Equitable Scores

- Take into account weighted event probabilities (sometimes use climatology)
- Discourage forecast "hedging"
 - Penalizes over-forecasting the most climatologically likely events
 - Rewards correct forecasts of rare events
- Cannot be "gamed" by a clever forecaster.
- Boundaries of Score
 - Zero: no skill (climatology)
 - 1.00: perfect forecasts

Examples

Heidke (1926) skill score
Peirce (1884) skill score

True skill statistic
Hanssen-Kuippers discriminant

Gandin and Murphy (MWR 1992)
Gerrity (MWR 1992)

Heidke / Peirce Score

$$PSS = \frac{\sum_{i=1}^{k} H_i - \sum_{i=1}^{k} O_i F_i}{N - \sum_{i=1}^{k} O_i O_i}$$

Gandin and Murphy Score (GM) Gerrity Score (GS)

Properties of scores

- Heidke and Peirce do not reward forecasts off the diagonal
- Gandin and Murphy (GM) provide partial credit to "near hits"
- Gerrity is a subset of GM
- Livezey (2003) compares the above scores and recommends Gerrity for ordinal categorical event forecasts

GM / Gerrity Equitable Skill Scores

Forecasts are scored in the following manner:

- Each cell of the contingency table is multiplied by a scoring factor with relative levels of rewards and penalties
- Each of the multiplied cell values is summed for a total score.
- Graduated reward/penalty system

GM / Gerrity Equitable Skill Scores

Graduated reward/penalty system:

- Forecast hits receive the most reward for each category of events
- A large forecast error is penalized more than a small error for a given category of events.
- A large reward for correct forecasts of rare events.
- A relatively small reward for correct forecasts of common events.
- Less penalty is assigned to an incorrect forecast of a rare event than a similar size error of a common event. "Near hits" of rare events receive a modest reward.

Example 1P matrixS matrix

10	10	10	1.25	25	- 1
10	<mark>10</mark>	10	25	0.5	25
10	<mark>10</mark>	10	- 1	25	1.25

Example 2P matrixS matrix

22	5	3	
7	19	4	
0	0	1	

.52	49	- 1
49	1	02
- 1	02	30.5

Rare event – Impact on Score 7-category wind speed - Nation

Year	Gerrity	N	>32 kt	>32 kt	Delta
	score		Hits/total	% Corr	
1995	.38	12,823	3 / 9	33	.02
1996	.47	13,145	11 / 17	65	.01
1997	.51	10,770	4 / 6	67	.03
1998	.53	12,717	19 / 24	79	.01
1999	.54	7371	6 / 7	86	.03
2000	.42	14,282	4 / 9	44	.02
2001	.38	28,064	1/9	11	.02
2002	.47	28,787	9 / 25	45	.01
2003	.44	30,751	6 / 15	40	.01
2004	.53	27,691	8 / 10	80	.02

Scoring Matrix

Select a formula for computing an equitable scoring matrix

- Gandin and Murphy (ordinal, non-circular elements)
- Gerrity
 (ordinal, non-circular elements)
- We need a separate method for wind direction due to its circular properties
 - Burroughs (1993): assumes equal distribution of wind directions
 - New mathematical ideas?

Scoring Matrix

How do we represent a random sample?

- Establish independence from the distribution of forecasts being evaluated
- Build from distribution of observations
 - Long-term climatology (historical dataset)
 - Dataset from which skill score is computed

Scoring Matrix

Problems with long-term history

- Climate change Does long-term record represent current data?
- Lots of number crunching for specialized computations

Problems with using the sample (of score)

- Large datasets Minimal problems
- Small datasets volatile statistics

Scoring Matrix History in US NWS

- Burroughs (EMC) marine forecast verification:
 - Marine wind and wave verification (started 1994)
 - Used Gerrity score
 - Static climatology used for all areas/months
- NWS Headquarters took control Sep 2002
 - NWS began computing scoring matrix from the sample of requested verification data
 - User of *Stats on Demand* selects the sample
 - Small samples (space or time) volatile scores (NWS adds a "delta value" to address volatility)
 - Future Return to climatology? If so, tailor climatology to area and time of year of sample

Unanswered Questions

- Scoring matrix / climatology issue
- Gerrity score
 - Only works for ordinal non-circular elements

Circular element - wind direction

References

- Gandin, L.S. and A.H. Murphy (1992). Equitable scores for categorical forecasts. *Mon. Weather Rev.*, **120**, 361-370.
- Gerrity, J.P. Jr (1992). A note on Gandin and Murphy's equitable skill score. *Mon. Weather Rev.*, **120**, 2707-2712.
- Burroughs, L.D. (1993). National marine verification program—verification statistics. *NMC Office Note 400,* OPC Contribution 79.
- Heidke, P. (1926). Berechnung der erfolges und der gute der windstarkevorhersagen im sturmwarnungdienst. *Geogr. Ann.*, **8**, 301-349.
- Joliffe, I.T. and D.B. Stephenson (2003). Forecast verification: a practitioner's guide in atmospheric science. John Wiley and Sons. See chapter 4 concerning categorical events, written by R. E. Livezey.
 Peirce, C.S. (1884). The numerical measure of the success of predictions. *Science*, 4, 453-454.