Incompatibility of equitability and propriety for the Brier score

Ian T. Jolliffe and David B. Stephenson Department of Meteorology University of Reading

- 1. Definitions Brier score, propriety and equitability
- 2. Incompatibility of propriety and equitability
- 3. A probability model for unskilful ensemble forecasts
- 4. Which is the best baseline to choose?

Definition of the Brier score

Suppose it is required to give a probability forecast of a binary event – the forecast issued on the ith occasion, i = 1,2, ...,n, says that there is a probability p_i that the event will occur. Let x_i = 1 if the event occurs and $x_i = 0$ if it doesn't. Then the Brier score is given by:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (p_i - x_i)^2$$

The Brier Skill Score

The BS can be converted to a skill score BSS by the linear transformation:

$$BSS = 1 - \frac{BS}{BS_{ref}}$$

where BS_{ref} is the Brier score for some unskilful reference forecast

Definition of *hedging* and *proper* scores

- 'Hedging' is when a forecaster gives a forecast different from his/her true belief because he/she believes that the hedged forecasts will improve the score on a measure used to verify the forecasts. Clearly hedging is undesirable.
- A (strictly) proper score is one for which the forecaster (uniquely) maximises the expected score by forecasting his/her true beliefs, so that there is no advantage in hedging.
- BS and BSS are strictly proper.

Definition of equitability

- A score is equitable if it takes the same value (often chosen to be zero) for all unskilful forecasts of the type
 - Forecast the same probability all the time or
 - Choose a probability randomly from some distribution on the range [0,1]
- Equitability is desirable if two sets of forecasts are made randomly, but with different random mechanisms, one should not score better than the other
- The reference forecast used in constructing BSS has a zero value of BSS, by definition

Propriety and equitability are incompatible

- Many possible scores are not proper BS is one of relatively few that are
- Equitability is even harder to achieve symmetric scores (those for which the same amount of over- or under-estimation is penalised equally) can only be equitable if the long-run probability of the event, θ (climatology), is 0.5
- It can be shown (new result) that it is impossible to achieve propriety and equitability simultaneously

A probability model for unskilful ensemble forecasts

- 1. The occurrence of the event is represented by a Bernouilli random variable x, with probability $P(x=1) = \theta$ (climatology)
- 2. The ensemble with m members is generated from a Binomial distribution with m trials and probability of success ϕ , and the probability forecast is the proportion of successes, p
- 3. 1 and 2 are independent, so the forecast is unskilful

$$x \sim Be(\theta)$$
$$mp = r \sim Bin(m, \phi)$$

Expected Brier score

The model allows us to calculate the mean (expected) Brier score:

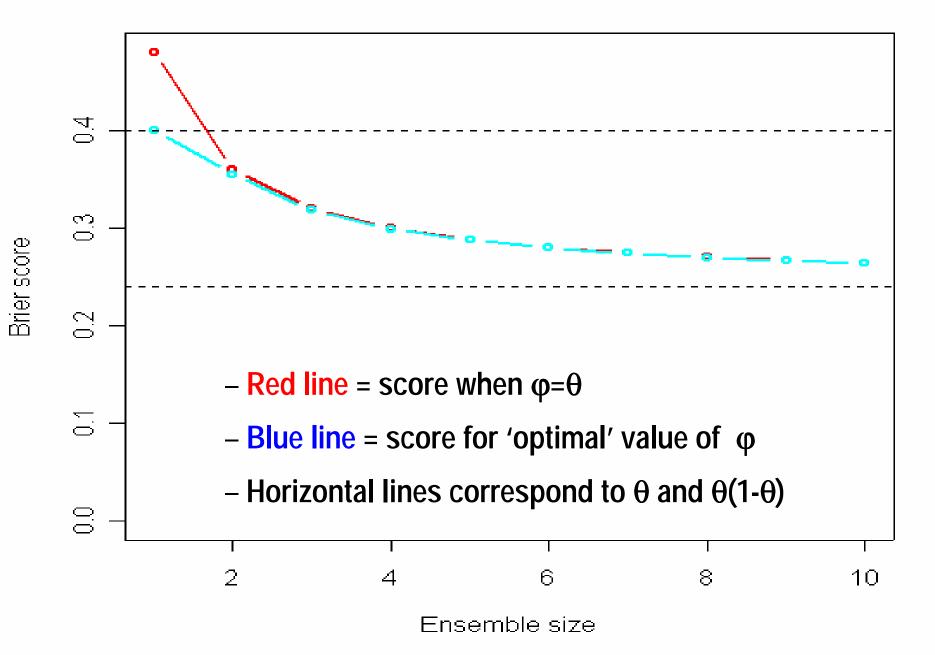
$$E(BS) = E((x-p)^{2})$$

= $(E(x) - E(p))^{2} + \operatorname{var}(x) + \operatorname{var}(p)$
= $(\theta - \phi)^{2} + \theta(1 - \theta) + \frac{\phi(1 - \phi)}{m}$

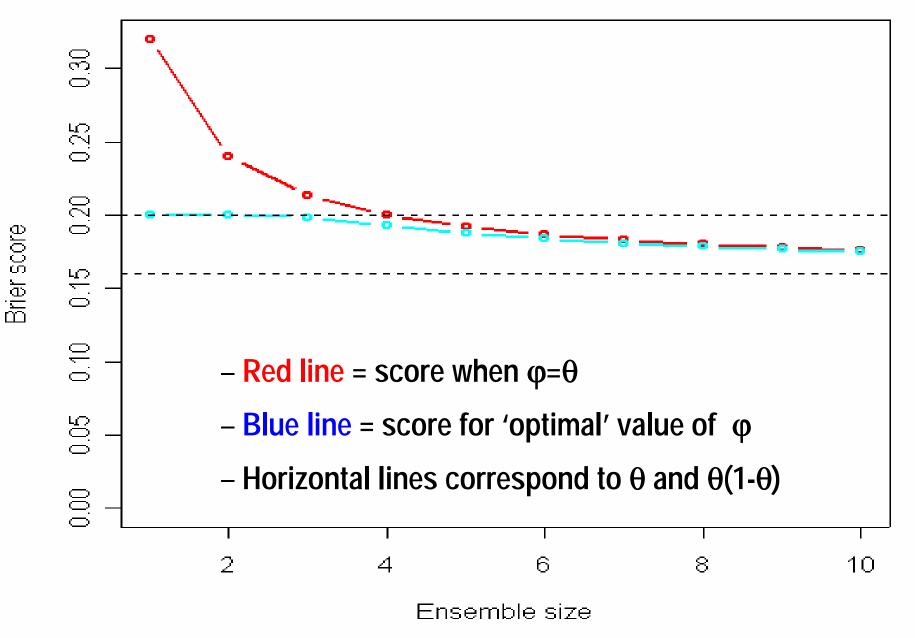
Properties of the mean score

- The smallest mean Brier score is not achieved by *climatology* φ=θ (except when θ=0.5).
- The smallest mean Brier score is obtained for the forecast probability $\phi=\theta + (2\theta-1)/2(m-1) i.e. \phi$ shifted slightly towards 0 or 1, depending on whether $\theta<0.5$ or $\theta>0.5$.
- If we use this choice as a reference forecasts, then E(BSS)≤ 0 for all random forecasts of this type.
- The m=1 special case issues probabilities of 0 and 1 and the Brier score is then equal to one minus the proportion correct. The formula for optimal ϕ breaks down for m=1. Here it is optimal to hedge to 0 or 1 depending on whether $\theta < 0.5$ or $\theta > 0.5$.
- The mean Brier score is the same for $(1-\theta)$ as for θ .

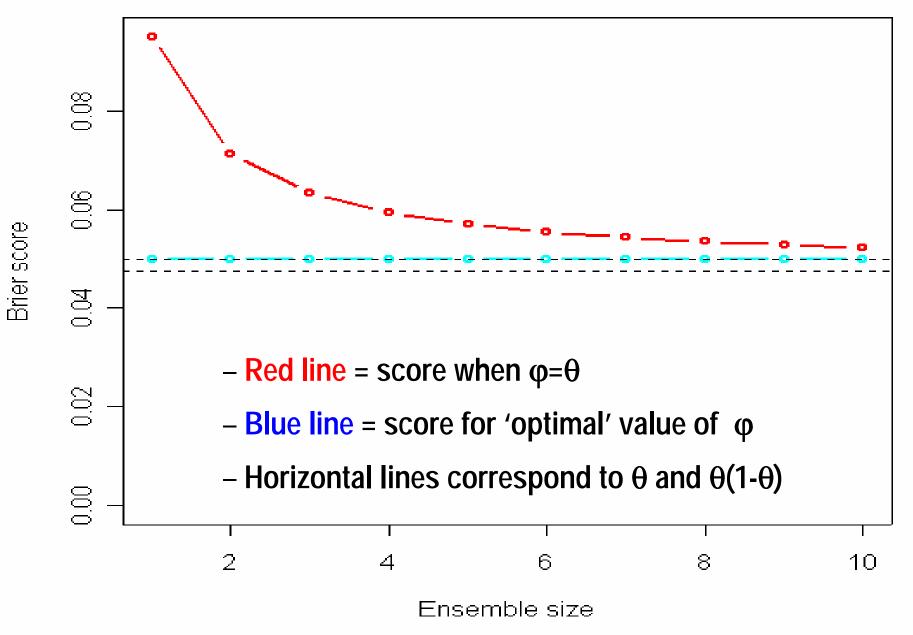
θ=0.4



θ=0.2



 $\theta = 0.05$



Conclusions from plots

- Lowest overall score is when $\phi = \theta$ and $m = \infty$
- All mean scores $\rightarrow \theta(1-\theta)$ as ensemble size m $\rightarrow \infty$
- Greatest 'improvement' compared to climatology occurs when m is small and $\,\theta$ is far from 0.5
- For large ensembles there is little improvement except for extreme events (θ close to 0) or very common events (θ near 1)

Possible reference forecasts

- Minimum score, based on ensemble of size m. $\phi = \phi_{min}$. All ensemblebased random forecasts have expected scores ≤ 0 .
- Müller et al[†]. based on ensemble of size m. $\phi = \theta$. Some ensemblebased forecasts have expected scores > 0.
- Mason[‡] does not like negative scores for some unskilful forecasts (some forecasts with skill will also have negative values). Chooses a reference forecast so that (most) unskilful forecasts have non-negative values.
- Climatology Ignore the ensemble and always forecast θ. Traditional. All constant probability forecasts, as well as all ensemble-based random forecasts have expected scores ≤ 0. Equivalent to φ = θ; m=∞.

† In press, Monthly Weather Review. ‡ In press, Journal of Climate.

Concluding remarks

- 1. No proper score is equitable
 - → Different unskilled forecasts give different proper scores.
 - → It is not clear how best to construct a proper skill score, but if forecasts are based on ensembles our strategy seems sensible.
- 2. We have assumed that propriety is essential. If it is abandoned, equitability can be achieved.
- 3. Some of the ideas can be extended to more than two categories via the rank probability score.
- 4. There are parallel, but somewhat different considerations for deterministic binary forecasts.