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Outline of talk

� Introduction
� Intervals expressing uncertainty

� Confidence intervals
� Prediction intervals

� Tests of hypothesis
� Links with intervals
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Introduction

� Often values of verification measures are given 
without any mention of the uncertainty associated 
with them

� Could quote a standard error � OK, but a 
confidence interval is better, especially if the 
distribution of the measure is not close to 
Gaussian

� In comparing values of a measure at different 
times, hypothesis testing may be a good way of 
addressing the uncertainty associated with an 
improvement 
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Confidence intervals

� Given a sample value of a measure find an interval 
with a specified level of confidence (e.g 95%, 
99%) of including the corresponding population 
value of the measure

� Note:
� the interval is random; the population value is fixed
� it is assumed that the data we have are a random sample 

from some larger (possibly hypothetical) population
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Example

� Niño 3-4 1958-2001. Data + 9 hindcasts produced 
by a ECMWF coupled ocean-atmosphere climate 
model with slightly different initial conditions for 
each of the 9 members of this ensemble
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An initial look at the data
� We can look at the data in a number of ways, with a large 

number of possible verification measures � for illustration 
consider 
� Binary (value above/below mean); use hit rate as a verification 

measure
� Continuous; use correlation as a verification measure

� The next three slides show
� Dotplots � there is little to distinguish the 9 hindcasts, but they all 

seem to be too small on average (biased) relative to the actual 
values

� Scatterplots of the data against the worst and best hindcasts with 
respect to correlation (r = 0.767, 0.891) 

� Data tabulated according to whether they are above or below 
average for the two hindcasts above
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Dotplot of verif, sim1, sim2, sim3, sim4, sim5, sim6, sim7, sim8, sim9

Each symbol represents up to 2 observations.
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9

Binary data for two hindcasts
(Hit rate 0.667, 0.762)

165Above

716BelowSim7

138Above

716BelowSim3
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Confidence interval for hit rate

� Like several other verification measures, hit rate is the 
proportion of times that something occurs � in this case the 
proportion of occurrences of the event of interest that were 
forecast. Denote such a proportion by p.

� A confidence interval can be found for the underlying 
probability of a correct hindcast, given that the event 
occurred. Call this probability π.

� The situation is the standard one of finding a confidence 
interval for the �probability of success� in a binomial 
distribution, and there are various ways of tackling this.
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Binomial confidence intervals

� Common approximation, based on the fact that the 
distribution of p can be approximated by a 
Gaussian distribution with mean πand variance 
p(1-p)/n where n is the �number of trials�. The 
interval has endpoints p ± zα/2√p(1-p)/n, where 
zα/2 = 1.96 for a 95% interval.

� A slightly better approximation is based on the 
fact that the distribution of p can be approximated 
by a Gaussian distribution with mean πand 
variance π(1- π)/n. Its endpoints are given by the 
roots of a quadratic equation. 
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Binomial confidence intervals II
� For small n we can find an interval based on the binomial 

distribution itself rather than a normal approximation. Such 
intervals are sometimes called �exact�, though their 
coverage probability is generally not exactly that specified, 
because of the discreteness of the distribution. Details are 
not given, but charts are available for finding such 
intervals.

� Bayesian intervals assume some prior knowledge about π. 
Such intervals are a different sort of animal � they assume 
that  πis random, not fixed, and use percentiles from its 
posterior probability distribution.

� Bootstrap intervals � illustrated later for the correlation 
coefficient.
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Binomial confidence intervals - example

� Consider hindcast Sim3 for which p =16/24 = 2/3 
= 0.67. Find 95% confidence interval for  π

� Usual approximation (0.48,0.86)
� Improved approximation (0.47,0.82)
� �Exact� interval (0.47,0.84)
� Bayesian interval based on uniform prior 

distribution (0.47,0.83)
� These demonstrate that n=24 is large enough for 

the approximations to work well 
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Confidence intervals for differences

� Suppose we have two forecasts and we wish to 
compare their hit rates by finding a confidence 
interval for the difference between the two 
underlying parameters π1-π2.

� In the present example it is pretty clear that, 
because of the small sample sizes, any interval 
will be very wide.

� As an illustration suppose we have the observed 
hit rates, p1=0.762, p2=0.667 but based on much 
larger samples n1=n2=200. Find a 95% confidence 
interval for π1-π2.
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Confidence intervals for differences II

� Large samples so approximation is fine.
� Interval has endpoints p1-p2±1.96√p1(1-p1)/n1 + p2(1-p2)/n2 (everything 

to the right of √ is square-rooted).
� Substituting gives 0.095±0.090, so interval is (0.005,0.185). This does 

not include zero, implying that π1,π2 are different.
� Note that 95% intervals for π1, π2 are (0.703,0.821), (0.602,0.732) 

respectively. These overlap, suggesting that π1, π2 may not be different.
� In comparing parameters it is usually more appropriate to find a

confidence interval for the difference than to compare individual 
intervals.

� Note that the interval above assumes independence of p1, p2. If they 
were positively correlated, the interval would be narrower.. 
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Simultaneous intervals for more than 
one measure � ROC curves

� If two measures have a known joint distribution, 
then the distribution could be inverted to find a 
confidence region for the two corresponding 
population measures

� The idea seems not to have been much developed 
in verification

� One situation where it might be useful is for ROC 
curves where hit rate (one measure) is plotted 
against false alarm rate (another measure) for 
several thresholds (so further multiplicity of 
measures)
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ROC curves II

� Pepe (2002), �The statistical evaluation of medical 
tests for classification and prediction� has 
� confidence rectangles 
� confidence intervals for hit rate, given false alarm rate

� More could be done
� rectangles ignore dependence (though hit rate and false 

alarm rate are statistically independent for a given 
threshold, so rectangles are OK in this context)

� if intervals are given for several thresholds, confidence 
coefficients need adjustment (corresponding to the 
multiple testing problem in hypothesis testing)
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Confidence intervals for 
Pearson�s correlation coefficient

� We have r, a sample value. We want a confidence 
interval for ρ, the corresponding population 
quantity.

� There are various approximations
� Interval with endpoints r ± zα/2(1-r2) /√n. A 95% 

interval is (0.645,0.889) for r=0.767 and n=44.
� Based on Fisher�s z-transformation, ½ln[(1+r)/(1-r)] is 

approximately normally distributed with mean 
½ln[(1+ρ)/(1-ρ)] and variance 1/(n-3). A 95% interval 
for r is (0.609,0.867) for r=0.767 and n=44.
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Bootstrap confidence intervals 
for correlation coefficients

� Take B random samples of size n with 
replacement from the paired data and calculate r 
for each sample. Rank the r values. For a 
confidence coefficient (1-2α) find the Bαth

smallest and Bαth largest of the r values. Call these 
l and u.
� The percentile method uses the interval (l, u).
� The �basic bootstrap� uses (r�(u-r), r+(r-l)).
� There are various other �improved� bootstrap 

confidence intervals. 
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Bootstrap example

� r = 0.767, n = 44, B = 80; 95% 
interval required. l=0.540 (2nd

smallest); u=0.904 (2nd largest).
� Percentile interval (0.540, 

0.904).
� �Basic� interval (0.630, 0.994).
� �Basic� interval using Fisher�s 

transformation (0.487, 0.890). 
� Note the outliers at left of 

bootstrap distribution.
b o o t s t r a p

0 . 9 0
0 . 8 4

0 . 7 8
0 . 7 2

0 . 6 6
0 . 6 0

0 . 5 4

D o t p l o t  o f  b o o t s t r a p
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Confidence intervals for correlation 
coefficients - discussion

� We have 5 intervals. Unlike the hit rate intervals they are quite 
different �which is to be preferred?

� Normal (0.65,0.89); Fisher (0.61,0.88); Percentile B (0.54,0.90); Basic 
B (0.63,0.99); Fisher Basic B (0.49,0.89).

� No best buy � you can�t place too much faith in the exact coverage of 
an interval without strong belief in the assumptions underlying it.

� But � Fisher should usually be a better bet than normal; �Basic� needs 
assumptions which are better satisfied after Fisher transformation.

� Whether the bootstrap or usual Fisher interval is preferred depends on 
reaction to the outlying bootstrap samples � do these reflect the 
distribution of r in the underlying population or are they simply 
reflecting odd behaviour in our particular data set?     
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Prediction intervals

� A prediction interval (or probability interval) is an 
interval with a given probability of containing the 
value of a random variable, rather than a 
parameter

� The random variable is random and the endpoints 
are fixed points in its distribution, whereas the 
interval is random for a confidence interval

� Prediction intervals can also be useful in 
quantifying uncertainty for verification measures 
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Prediction intervals for correlation 
coefficients

� We need the distribution of r, usually calculated under 
some null hypothesis, the obvious one being that  ρ =0. 
Using the crudest approximation, r has a Gaussian 
distribution with mean zero, variance 1/n.

� If a confidence interval for ρ doesn�t include zero we 
conclude that there is a (linear) relationship between 
forecast and data.

� Prediction intervals provide a dual way of tackling the 
same question, by ascertaining whether the prediction 
interval includes the observed value of r.  
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Prediction intervals for correlation 
coefficients - example

� Using the crude approximation, a 95% 
prediction interval for r, given ρ=0, has 
endpoints ± 1.96√1/n.

� With n=44, these are ± 0.295. All the 
observed values of r are well outside this 
interval, indicating a relationship between 
hindcasts and data � the hindcasts have 
skill.



25

Hypothesis testing

� The interest in uncertainty associated with a 
verification measure is often of the form
� Is the observed value compatible with what might have 

been observed if the forecast system had no skill?
� Given two values of a measure for two different 

forecasting systems (or the same system at different 
times), could the difference have arisen by chance if 
there was no difference in underlying skill for the two 
systems (the two times)?
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Hypothesis testing II

� Such questions can clearly be answered 
with a formal test of the null hypothesis of 
�no skill� in the first case, or �equal skill� in 
the second case 

� A test of hypothesis is often equivalent to a 
confidence interval and/or prediction 
interval 
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Correlation coefficient - test of ρ=0

� Continuing our example with 0.767, n=44.
� Null hypothesis H0: ρ=0

� Use the crude approximation that, under H0, r has a
Gaussian distribution with mean zero, variance 1/n. 
Then reject H0 at the 5% significance level 
(atmospheric scientists but hardly anyone else may 
refer to this as 95%) if and only if r is larger than 
1.96√1/n or less than -1.96√1/n; in other words, if and 
only if r is outside the (1-α) prediction interval for r 
found earlier. Clearly H0 is rejected at the 5% level.
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Correlation coefficient - test of ρ=0 
via confidence intervals

� We could also use any of our earlier 
confidence intervals to test H0. We gave 
95% intervals, and would reject H0 at the 
5% level if and only if the interval fails to 
include zero, which it does in all cases.

� If the intervals were 99%, the test would be 
at the 1% level, and so on. Similarly for 
prediction intervals.
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Permutation and randomisation 
tests of ρ=0

� If we are not prepared to make assumptions about the 
distribution of r, we can use a permutation approach: 
� Denote the forecasts and observed data by (fi, oi), i =1, �n.
� Fix the fis, and consider all possible permutations of the ois. 
� Calculate the correlation between the fis and permuted ois in each 

case.
� Under H0 all permutations are equally likely, and the p-value for a 

permutation test is the proportion of all calculated correlations 
greater than or equal to (in absolute value for a two-sided test) the 
observed value.

� The number of permutations may be too large to evaluate 
them all. Using a random subset of them instead gives a 
randomisation test.
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Conclusions

� It is important to quantify the uncertainty 
associated with computed values of verification 
measures

� Standard errors, confidence intervals, prediction 
intervals, tests of hypotheses, can all be used to do 
so

� Which to use, and which variety, depends on the 
context and on the assumptions that can be safely 
made 


