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1. Introduction

Precipitation forecasts, whether they are expressed in the form of amounts over a specific period 
of time, or as instantaneous rates, are difficult to verify because the distribution of precipitation is 
highly variable in space and time. Variations occur on all scales, but there is usually a significant 
contribution to the overall variability from smaller scale components. Forecasts and observations 
may be expressed with different implicit resolutions, which presents problems for the matching of 
forecasts to the verifying observations.

This paper describes a framework for verification in general, and discusses its application to pre-
cipitation verification in particular. Issues concerning the selection of a verification strategy are 
identified as a starting point for verification of the forecasts obtained from the Sydney Forecast 
Demonstration Project (FDP), which took place between September 1 and November 30, 2000. 
Following a discussion of the issues and principles of verification, some specific verification mea-
sures for continuous and categorical forecasts are described along with their characteristics.

2. Principles of Verification

2.1 Forecast “goodness”

Allan Murphy (1993) defines the “goodness” of a forecast in terms of three aspects: First, fore-
casts should be consistent. That is, the forecast should always agree with the forecaster’s true 
belief about the future weather. Verification scores which encourage consistent forecasts are 
called strictly proper, which means that the forecaster cannot better his score by systematically 
issuing a forecast which does not agree with his judgement about the future weather. 

The second aspect of goodness identified by Murphy is quality, which may be defined as the cor-
respondence between forecasts and the corresponding observations. It is the quality of forecasts 
that is measured by verification methods; this is the subject of the rest of this paper. 

The third aspect of “goodness” is value, defined as the increase or decrease in economic or other 
kind of value to someone as a result of using the forecast. The assessment of value always 
requires additional information from the user of the forecast, information that describes as objec-
tively as possible the nature of the user’s sensitivity to weather events. This additional information 
is combined with verification information to assess value. Since forecast users are sensitive to 
weather events in different ways, normally an assessment of forecast value is specific to a partic-
ular user and must be recalculated for each different user. The assessment of forecast value 
involves the branch of statistics known as decision theory.

2.2 Basic Principles of Verification

There are some basic principles that apply generally to verification activity. The first of these is 
that verification of the quality of forecasts has value only if the information generated leads to a 
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decision about the forecast or system being verified. That is, there should be a target user of the 
verification information who is identified before the start. The purpose of the verification should 
also be known in advance because that is the only way the verification methodology can be tuned 
to meet the needs of the user of the verification information. Decisions resulting from verification 
activity need not involve a change in the forecast product, a decision that a product is “good 
enough as is” is also a perfectly valid use of verification information. If verification is done without 
the knowledge and participation of a user, then the results are most likely to be filed in a drawer 
somewhere and never used.

A second principle governing verification is that no single measure exists that provides complete 
information about the quality of a forecast product. All scoring systems are deficient in one or 
more ways, which means that it is usually necessary to use a variety of measures to obtain rea-
sonably complete verification information. This also means that it is important to be aware of the 
limitations of the various scores so that they are not used incorrectly.

A third principle that applies to the forecast rather than to the verification is that forecasts must be 
stated so that they are verifiable. Forecasts that are stated using vague terminology such as 
“chance of rain” are not verifiable unless further information is provided on the meaning of 
“chance”. A corollary to this principle is that the predicted quantity must be stated clearly and 
completely. For example, a precipitation forecast should include statements about the temporal 
and spatial resolution. Is it valid for a point or a specific area, and is it an instantaneous value, an 
average over a specific period of time, or integrated over a period of time? In all these examples, 
the spatial and temporal range of validity should be specified along with the forecast. Verification 
results are more likely to be fair and unbiased when the forecast quantity is stated completely in 
advance of the occurrence of the event, so that no a posteriori reinterpretation of the forecast 
event is possible.

2.3 Factors to consider in verification strategy

All verification activity begins with a matched set of forecasts and observations, a joint distribu-
tion. Before preparing the data, it is important to consider several factors which have an impact 
on the data processing.

2.3.1 Goals of the verification

Verification is carried out for a wide variety of reasons, but they can be generally divided into 
three types: administrative, scientific, and value. Examples of administrative verification goals 
include justifying the cost of the provision of weather services, justifying the purchase of new 
equipment, or monitoring the quality of forecasts over periods of years to track improvements in 
the forecast system. Such purposes normally require considerable summarizing of the verifica-
tion information into as few values as possible. A single measure may be used, averaged over a 
large number of forecasts for a large number of locations, over perhaps a full year. Sometimes, 
administrators may even request the summarizing of verification output over several weather ele-
ments, in an attempt to arrive at a single value that characterizes the quality of all weather fore-
casts from a national weather service. In general, summarizing by averaging or other means, 
involves the loss of verification information, and can obscure differences in characteristics of the 
quality of forecasts. However, it is a legitimate procedure for many administrative purposes, as 
long as one is careful not to “read too much” into the verification results.
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Scientific goals of verification concentrate more on learning about the different aspects of the 
quality of the forecast, to identify its strengths and weaknesses in sufficient detail to indicate pos-
sible improvements in the forecast product. In short, the information is sought to help direct R&D. 
Scientific verification usually focusses on more specific questions about the quality of the fore-
cast, such as how well extreme values are predicted, or whether there are biases in the forecast.

When the goal of the verification is to determine the value of the forecast to a user or a group of 
users, then the verification information which is needed is specific to that user, and depends on 
the nature of his (economic) sensitivity to weather. As mentioned above, additional objective 
information is required from the user to combine with the forecast verification information. 

The design of the verification and the measures that are chosen depend on the goal of the verifi-
cation and on the user of the results. It is therefore important to state the question to be answered 
by the verification as completely and in as much detail as possible, before the work starts. Exam-
ples are: “How accurate are the model’s grid-box average precipitation forecasts?” or, “Is there 
any skill in point forecasts of 6-h precipitation accumulation?”, or, “Have station temperature fore-
casts improved over the last 5 years?”

2.3.2 Type of forecast

The design and selection of a verification methodology depends also on the type of forecast, or 
the type of predictand. Meteorological variables can be divided into three distinct types, continu-
ous, categorical and probabilistic. Continuous variables are those for which the forecast is 
expressed as a specific value or range of values of the variable, for example, a temperature of 10 
degrees or a 6 hour precipitation accumulation of 5.5 mm. Parameters that are usually forecast 
as continuous variables are temperature, wind direction and speed and upper air variables such 
as geopotential height and temperature.

WIth a categorical variable, the forecast is for the occurrence or non-occurrence of a particular 
predictand category, such as weather types snow or rain. All the weather elements are naturally 
categorized by their occurrence or non-occurrence at a particular place and time, but it is also 
common to express continuous variables as categorical variables by selecting a set of threshold 
values to distinguish the categories. For instance, precipitation forecasts are sometimes 
expressed categorically by setting thresholds at 1mm or 5mm or 10mm or 20mm, then examining 
the performance of a forecast of the occurrence of precipitation amounts above each of these 
thresholds. Variables may be categorized into two categories by setting one threshold, or into n 
categories by setting n-1 thresholds simultaneously. In all cases, the continuous forecasts are 
“binned” into one of the categories, and the categories are mutually exclusive and exhaustive. 
That is, each forecast value of the continuous variable is mapped into one and only one category. 
Effectively, the categorization process means that a smooth distribution of forecast values is rep-
resented by a histogram of frequencies of occurrence in each of the categories. It should be 
noted that the categorization of a continuous variable represents a transformation of the forecast, 
and forecast information may be lost in the process. Categorical forecasts are represented math-
ematically by assigning a value of 1 to the category which is forecast and 0 to all the other cate-
gories. For verification, these forecasts are matched with observations expressed the same way.

Probabilistic forecasts consist of probabilities of occurrence of the categories of a categorical 
variable. In a sense, categorical forecasts are a special case of probabilistic forecasts where only 
two probabilities, 1 (100%) and 0 are allowed to be predicted. Probabilistic forecasts allow for the 
full range of probabilities to be assigned to each of the categories, with the only restriction that 
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the probabilities must sum to 1 for a set of mutually exclusive and exhaustive categories. (One 
and only one of the categories must occur). Meteorological variables that are normally treated 
categorically include those which are inherently categorical such as precipitation occurrence, the 
occurrence of other weather and obstructions to vision, and precipitation type. Variables that 
have continuous distributions but are usually predicted categorically include cloud amount, and 
precipitation amount.

Another type of forecast used with continuous variables is called a credible interval forecast. 
These are forecasts of ranges of the predictand, where the range is defined according to the fore-
caster’s probability estimate that the event will occur in the range. For example, a 50% percent 
credible interval forecast of temperature between 12 and 16 degrees might mean that the fore-
caster believes there is a 50% chance the temperature will lie in this range, with an expected 
value of 14 degrees. In terms of the three types of forecasts above, the credible interval forecast 
is a probabilistic forecast where the category thresholds are set by the forecaster on each occa-
sion, rather than being selected a priori and remaining constant for all forecasts. When the fore-
caster is less confident, his 50% range will be wider. Credible interval forecasts share some 
characteristics with continuous forecasts also in the sense that any value of the variable can be 
forecast as the expected value. Credible interval forecasts are not widely used, but they do con-
vey more information than either a forecast of a specific value or a probability forecast of a spe-
cific interval.

2.3.3. Attributes of the forecast

Once one has assembled the joint distribution of forecasts and observations, It is possible to 
examine its characteristics in three main ways: One can look at the overall correspondence or 
association between the pairs of observations and forecasts, that is, to calculate statistics based 
on the full joint distribution. Then, alternatively, one can set conditions on the distribution, for 
instance fixing the forecast values within a narrow range and examining the observations only for 
cases where forecasts were within that particular range. Verification results obtained this way are 
said to be conditional on the forecast, because it is the forecast that has been restricted to a par-
ticular set of values. The distribution of observations obtained for such a subset of cases is said 
to be a conditional distribution. In practice, verification measures that are conditional on the fore-
cast are computed by first stratifying or “binning” the data sample by forecast value, which is 
equivalent to setting the condition. Similarly, if the observation is constrained to a specific set of 
values, then by “binning” the data sample according to observation value, statistics can also be 
computed which are conditional on the observation. These three types of analysis of the joint dis-
tribution allow one to examine different aspects of the quality of forecasts, called attributes.

Table 1: The nine attributes of forecasts, with definition and some related verification measures.

ATTRIBUTE DEFINITION RELATED MEASURES

1. Bias Correspondence between mean forecast 
and mean observation

bias (mean forecast probability-sample 
observed frequency)

2. Association Strength of linear relationship between 
pairs of forecasts and observations

covariance, correlation

3. Accuracy Average correspondence between individ-
ual pairs of observations and forecasts

mean absolute error (MAE), mean squared 
error (MSE), root mean squared error 
(RMSE), Brier score (BS)

4. Skill Accuracy of forecasts relative to accuracy 
of forecasts produced by a standard 
method

Brier skill score, others in the skill score 
format.
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Murphy (1993) identifies nine attributes of forecasts. In addition to the general goal of the verifica-
tion and the type of forecast variable, the selection of a verification methodology depends also on 
which attributes of the forecast are to be studied. Table 1 shows the nine attributes and their defi-
nition in terms of unconditional and conditional distributions. The first 4 of these, bias, associa-
tion, accuracy and skill, relate to the analysis of the unconditional joint distribution of forecasts 
and observations; the next three relate to stratification by (conditioning on) the forecast, while the 
last two are associated with stratification of the dataset by observation. The attributes can be 
considered to be different dimensions of the verification problem; if one wishes to obtain reason-
ably complete verification information about a set of forecasts, it is necessary to examine several 
of these attributes using the appropriate measures. Attributes are not dependent on the type of 
forecast. Though they might be given different names, corresponding attributes exist for continu-
ous forecasts and categorical or probabilistic forecasts.

Allan Murphy in his landmark article with Winkler (Murphy and Winkler 1987) states that all verifi-
cation information is contained in the joint distribution of forecasts and corresponding observa-
tions. Murphy and Winkler describe two types of factorization of the joint distribution, which 
correspond to the two types of stratification described above. The calibration-refinement factor-
ization is equivalent to stratification by forecast value. It is expressed more formally by writing the 
joint distribution 

where  is the conditional distribution of the observations given the forecast and  is the 

unconditional (marginal) distribution of forecasts. Stratification by observations leads to the other 
factorization, called likelihood-base rate by Murphy and Winkler (1987),

where  is the conditional distribution of the forecast given the observations and  is the 
unconditional (marginal) distribution of the observations, which is the sample climatological distri-
bution. The joint distribution  contains all the information needed to compute verification 
measures and to assess the attributes of the forecast; once the forecasts are matched with their 

5. Reliability Correspondence of conditional mean 
observation and conditioning forecast, 
averaged over all forecasts

Reliability component of BS, MAE, MSE 
of binned data from reliability table

6. Resolution Difference between conditional mean 
observation and unconditional mean obser-
vation, averaged over all forecasts

Resolution component of BS

7. Sharpness Variability of forecasts as described by dis-
tribution of forecasts

Variance of forecasts

8. Discrimination Difference between conditional mean fore-
cast and unconditional mean forecast, 
averaged over all observations

Area under ROC, measures of separation 
of conditional distributions; MAE, MSE of 
scatter plot, binned by observation value

9. Uncertainty Variability of observations as described by 
the distribution of observations

Variance of observations

Table 1: The nine attributes of forecasts, with definition and some related verification measures.

ATTRIBUTE DEFINITION RELATED MEASURES

p f x,( ) p x f( )p f( )=

p x f( ) p f( )

p f x,( ) p f x( )p x( )=

p f x( ) p x( )

p f x,( )
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corresponding observations, the different verification measures represent different ways of pro-
cessing the component events of the joint distribution.

2.3.4 Data issues

The matching of forecast and observation is not always a trivial process, especially when forecast 
and observation have different characteristics. For variables such as precipitation rate or amount, 
which often exhibit considerable small scale variability in space and time, the determination of the 
joint distribution may be especially difficult and choices must be made. It is convenient to charac-
terize observation datasets by three characteristics, sampling, resolution, and proxy data.

It should always be the intent of verification activity to obtain the best possible observation 
dataset for the purpose. However, observations are never complete in space and time. The reso-
lution of the observation can be considered to be the inherent spatial averaging area and/or the 
temporal averaging period of the actual measurement. For example, for a satellite observation, 
the spatial resolution is the “footprint” or the pixel size of the measurement; for a radar observa-
tion, it is the horizontal projection of the sampling volume, which varies with range. For rain gauge 
observations, the resolution may be determined in terms of representativeness, which will vary 
according to the siting, but would be expected to be not more than 100 to 200 m radius in the 
vicinity of the gauge. The temporal resolution can be defined in terms of the inherent averaging 
period of the observation, which is essentially instantaneous for satellite and radar observations, 
but may be much longer for gauges, depending on the instrument. Gauges normally report accu-
mulated precipitation, which is averaged over the accumulation period.

The issue of observation sampling frequency is particularly important for elements with small 
scale variability because of the need for high spatial and temporal sampling frequency to ade-
quately describe the small scale variations.   A gauge is taking observations continuously if it is a 
recording gauge (high sampling frequency) but may have a long averaging period (low resolu-
tion), depending on how observations are reported. Satellite observations are typically relatively 
high resolution in space, but the sampling frequency may be very low in time, perhaps with a 
return period of several days to a particular location. Radar data is high resolution in space and 
continuous spatial sampling (all locations within the radar range are sampled), but the temporal 
sampling is discrete, depending on the return period of the radar to a particular sampling loca-
tion.

It is tempting to try to combine the continuous temporal sampling of gauges with the continuous 
spatial sampling of radar to obtain a complete spatial and temporal representation of precipitation 
occurrence. However, radar data is proxy data, which means that the physical parameter is not 
observed directly. Rather, an equation (the Z-R relationship) must be used to convert the signal 
received by the radar into an estimate of the physical parameter, rainfall.   By means of ground-
truthing studies, precipitation observed by gauges can be related to corresponding radar signa-
tures. However there are several potential or real sources of error in such relationships: shadow-
ing, anomalous propagation and ground clutter in the radar echo and uncertainty due to 
differences in the location of the sampled radar volume vs. the corresponding ground location. 
Gauge observations are subject to representativeness errors related to their siting and location, 
which means that the true relationship between radar-sampled precipitation and gauge precipita-
tion observations will vary from station to station. Despite all these potential errors, ground-truth-
ing is certainly worth doing, to optimally extract information about the precipitation field from both 
sources of data.
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In situ observations from gauges are normally represented with certainty in the dataset of obser-
vations, that is, by means of a specific precipitation amount or categorically as 1 or 0 for the 
occurrence or non-occurrence of precipitation respectively. The use of proxy data with its associ-
ated errors and uncertainties raises the prospect of a probabilistic representation of observation 
data, for example as a credible interval around a specific precipitation amount, or a probability 
that the precipitation actually occurred over a preset threshold, given the evidence from the radar 
signal. Such probability estimates should be calibrated using ground-truthing studies.

Given all these limitations of observations, the question arises: Is it appropriate to process the 
observation data, by analysis or other means, to match it to the forecast? In general, the answer 
to this is “no” because this leaves the verification process open to biases in favour of the fore-
casts being verified. There are, however, exceptions to this guideline, as described below. How to 
match the forecast and observation depends on the characteristics of each. Given that model 
precipitation forecasts are often claimed to be “grid-box” averages, then the matching problem is 
one of resolution differences: how to match a forecast that has spatial resolution equal to the size 
of the grid box to irregularly spaced gauge observations which have high spatial resolution. The 
simplest and fairest is to treat the observations as estimates of the grid box average and match 
them with the forecasts. In the absence of information on the systematic (climatological) distribu-
tion of precipitation in the grid box area, a single point estimate of precipitation will tend to under-
estimate slightly the areal mean since precipitation amounts are distributed according to the 
gamma distribution (Mielke 1973). The gamma distribution is skewed and thus has a mode (max-
imum probability density) lower than the mean. If spatial climatology information is available for 
an area, the observation could be adjusted in light of this information to obtain a better estimate 
of the area mean precipitation. Analysis of scattered observations onto the grid of the model is 
not recommended because this systematically processes the data distribution so that it has reso-
lution characteristics of the model being verified. This is especially true of analysis routines that 
use trial fields, but is true to some extent of all spatial analysis routines. It is questionable whether 
point observations should be analyzed at all for verification purposes because the drastic under-
sampling of the true precipitation field translates into uncertainties in the analysis at all scales. In 
other words, if a specific precipitation field were sampled at different points with the same spatial 
sampling frequency, then a different analysis would result, whatever the resolution of the analy-
sis. Again, this is particularly true when the field contains large amounts of small scale variability. 
In general, an attempt to filter the observations so that they contain only the scales that can be 
resolved by the model is really an attempt to enable a model to obtain a perfect verification score 
without producing a perfect forecast. The inability of a model to resolve all scales is simply one 
source of error which should not be eliminated from the verification.

If one has the luxury of having more than one point observation within a grid box, then an aver-
age of the observations within the grid box will provide a better estimate of the grid box average 
observed precipitation. It is fair and perhaps preferable to carry out verification analysis of model 
forecasts at several different resolutions, by averaging both grid point forecasts and observations 
over larger areas. The greater the number of samples in an area, the more accurate the estimate 
of the area average precipitation, again assuming a climatologically homogeneous distribution.

When the forecast is expressed as point values at locations different from the observation points, 
then it is preferable to go from forecast to observation, that is, to interpolate the forecasts to the 
observation sites rather than the other way around. This recognizes that the forecast is limited to 
estimates of the forecast quantity at a subset of sites; failure to forecast at all the sites is a limita-
tion of the forecast which is expressed through the interpolation.
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Under some circumstances, processing of observations is fair. For example, when the purpose of 
the verification is to assess the quality of changes to the physics of a model, it may be preferable 
for research purposes to process the observations to remove small scale components of the pre-
dictand which have nothing to do with the changes in the model, and which would be seen as 
noise that would obscure any differences due to differences in model formulation. The essence 
here is that the purpose of the verification is the comparison of two versions of the model at the 
same resolution; both versions would be expected to be subject to the same limitations of resolu-
tion.

A second type of instance when processing of observations is acceptable are those situations 
when the expression of the forecast is placed under specific limitations which are known in 
advance (a priori). An example of this is Harold Brooks’ application of a Gaussian kernel distribu-
tion around severe weather reports to determine a “practically perfect” forecast (Brooks, in this 
volume). A practically perfect forecast is the forecast that would have been made under the 
known constraints, if the forecaster knew the outcome (observations) in advance. That is, it is the 
best forecast that could be made. One should still distinguish this from a true perfect forecast, 
however, which in the case of a precipitation forecast, would predict the precipitation field per-
fectly at all scales. Restrictions are often placed on the expression of forecasts to prevent over-
confidence when it is not justified by the state of the art. Practically perfect forecasts are therefore 
with reference to the state of the art rather than perfect in any absolute terms.

In summary, statistical estimation of the observed counterparts to forecast quantities is preferable 
to analysis of observations onto a specific grid, and it is desirable to take advantage of all sources 
of observation information to obtain optimal estimates.

3. Verification methods for continuous forecasts

3.1 Scatter plots

Since verification data comes in the 
form of bivariate joint distributions, 
it is a simple matter to plot the data 
as a forecast vs. observed scatter-
plot. Scatter plots are fundamental, 
as they provide an instant visual 
comparison of forecasts and corre-
sponding observations, and all the 
data are visible - there is no loss of 
information. For large samples, 
scatter plots may become cluttered, 
in which case the point density can 
be reduced in various ways, for 
example, by binning the data and 
plotting a single point at the mean 
value of each bin.

Figure 1 shows an example of a 
scattershot for the Sydney FDP 
data. There are 152 points plotted, 
representing forecasts and obser-

Nimrod - scatterplot
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Figure 1. An example of a scatter plot, showing forecasts
vs. observations for 15, 30 and 45 minute forecasts of
instantaneous precipitation rate in mm/h from the Nimrod
system.
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vations at 152 station locations for a specific time. The verifying observations are radar rain rates, 
and they are matched to the nearest grid point of the forecast. All forecasts and observations are 
valid at 0330 UTC on November 3, 2000. It is evident from the scatter plot that there is a relation-
ship between forecast and observation at only a few of the locations, and then only for the fifteen 
minute forecast projection. The outliers in the sample are also immediately evident, for example 
the forecast of 78 when 3 was observed and a forecast of 7 when 44 was observed.

.Figure 2, also for the Sydney FDP data, 
shows another way of comparing the dis-
tribution of several variables. Here it can 
be immediately seen that the shortest 
range forecasts up to 45 minutes have 
approximately the same dispersion as 
the observations, but the longer range 
forecasts from 60 to 90 minutes, have a 
much smaller variability than the obser-
vations. This form of display does not 
evaluate the joint distribution, but rather 
allows comparison of the characteristics 
of the distributions of forecasts and 
observations (the two marginal distribu-
tions).

Scatter plots are essentially graphical 
depictions of the joint distribution of fore-
casts and observations. They are simple 
and extremely valuable diagnostic tools. 
If used early in a verification analysis, 
they help identify suspicious data values, 
as well as helping identify specific events 

in the sample that warrant further attention.

3.2. Scores for continuous forecasts.

The most frequently used scores for continuous forecasts are bias, mean absolute error (MAE), 
root mean square error (RMSE), variance explained or reduction of variance, and correlation. 
Each of these evaluates a specific attribute of the forecast, summarizing it by means of a single 
value for a given dataset. These are summarized in Table 2 along with their characteristics and 
ranges.

Table 2: Summary of the equations and characteristics for the most frequently used 
verification measures for continuous forecasts.

Measure Equation Range
Best 
score

Characteristics

bias -  to 0 mean error over a sample

Nimrod - Distribution comparison

pc
pn

 r
at

e

variable

F15 F30 F45 F60 F75 F90 OBS
0

20

40

60

80

Figure 2. Another graphical way to compare 
distributions of several variables. Example from
Nimrod, for observations compared to 15 to 90 
minute forecasts. Units are mm/h.
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In the table, the sample size is , the forecast 

and observed variables are  respectively, 

 is the corresponding climatological forecast 
value, the overbar indicates the sample mean, 
and  are the standard deviations of the 
forecast and observations. The reduction of 
variance or variance explained is related to the 
partitioning of the variance of the predictand 
(observations) into two components, the portion 
explained and the portion unexplained by the 
forecast (the errors). This is illustrated graphi-
cally in Figure 3. Figure 3 is actually an illustra-
tion of a bivariate regression; regression, 
correlation and reduction of variance are all 
closely related.

MAE 0 to 0 average magnitude of errors, linear

RMSE 0 to 0 quadratic scoring rule: larger errors 
carry higher weights; comparison 
RMSE - MAE indicate the error 
variance; ; CAUTION: 
sometimes mean error is subtracted 
when computing these scores 

RV -  to 1 1 a skill score in the usual format with 
respect to climatology. Is interpreted 
as the % of predictand variance 
explained, or the % improvement 
over climatology. Can be referenced 
either to long term or sample clima-
tology. CAUTION: can become 
unstable if climatology is accurate, 
and for small samples.

correla-
tion (r)

-1 to +1 1 The degree of linear association; 
insensitive to bias; covariance nor-
malized by the product of the stan-
dard deviations; square root of the 
RV when RV positive. 

Table 2: Summary of the equations and characteristics for the most frequently used 
verification measures for continuous forecasts.

Measure Equation Range
Best 
score

Characteristics
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Figure 3. Diagram showing partitioning of
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the variance of predictand y into explained
and unexplained components. In this
example, the predictor (forecast) is “thickness”
and the predictand (observations) is
“maximum temperature”. 
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Figure 4 illustrates the effects of 
removing the bias before computing 
the MAE or the RMSE. The bias is 
represented by the difference 
between the forecast and observed 
mean, the difference in the means 
of the two distributions. This dis-
tance is effectively removed from 
each error value, which is equivalent 
to adjusting the forecast distribution 
to be centered on the observed dis-
tribution before computing the MAE 
or RMSE. There are occasions 
when this is desirable, for example 
when two forecasts are being com-
pared against the same set of 
observations. Separation of errors in 
this way allows for direct compari-
son of the variable component of the 
forecast error from the two forecast 
systems.

In summary, we can define the following statistics of the error, where the error of the ith event is 
defined by :

The bias and the error variance are the first two moments of the distribution of errors, which is 
formed by pairwise subtraction of the observations from the forecasts. The RMSE calculated by 
first removing the sample bias is equal to the standard error, however, this is NOT the same as 
subtracting the bias from the RMSE computed from the original data. The mean squared error is 
reduced by the square of the mean error when the mean error is removed first. When the bias is 
large, this can make quite a difference. Sometimes the bias is associated with the accuracy and 
the (R)MSE is associated with the confidence on can place in the forecast. It is often useful to 
separate bias and error variance when comparing different forecast systems so that one may 
compare the components of the error which can be easily corrected (bias) vs. those which are 
harder to correct (error variance, or unexplained variance)
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Figure 4. Schematic illustrating the effect of removing the
average error before computing the MAE or RMSE. This
is equivalent to repositioning the forecast distribution so 
that the means are coincident.
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Verification of precipitation forecasts - Part I
One verification measure for continuous forecasts that is less often used is called Linear Error in 
Probability Space (LEPS). First introduced by Ward and Folland (1991), this method evaluates 
forecasts in terms of the cumulative distribution function (cdf) of the observations. The formula is:

where  is the climatological cdf, or the cdf of the observations (sample climatology). It is easi-

est to use the sample cdf rather than long-term climatology, but the latter would be useful when it 
one wishes to compare the accuracy of forecasts of common events vs. forecasts of extreme 
events. The range of LEPS is 0 for a perfect forecast to 1 for the worst possible forecast. Since 
the score is sensitive to differences in the cumulative probability of forecast and observed, fore-
cast errors in the higher probability density part of the distribution are weighted more strongly. 
This could be quite appealing in the case of precipitation verification. An error of, say, 1 mm in a 
quantitative precipitation forecast would be assigned a higher penalty if the observed amount 
were small, and a much lower penalty if the observed amount were high. However, both missed 
events and false alarms would be given relatively high penalties.

Figure 5 shows an example of the 
computation of the LEPS score for an 
observation of 0.1 mm and forecast of 
0.2 mm precipitation. The observa-
tions are assumed to be distributed 
according to the gamma distribution 
which has the cdf as shown. One can 
visualize from the graph that the pen-
alty assigned to errors in QPF would 
be relatively small when both observa-
tion and forecast are for extremes.

One can formulate a skill score for 
LEPS, in the standard format, 

 The 

easiest standard to use would be the 
median of the distribution, which has a 

LEPS value of 0.5. Note that the median, or other statistic of the distribution is not known in 
advance if the sample distribution is used to evaluate LEPS, which means that the “standard fore-
cast” is not available to the forecaster when he makes his forecast. For this reason, it might be 
preferable to calculate LEPS with the long term climatological distribution if a reasonable esti-
mate of skill is wanted. The LEPS skill score with respect to the median is:
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Figure 5. An example of LEPS, assuming a gamma
cdf, for an observation of 0.1 mm and forecast of 0.2 
mm precipitation. In this case the score value would 
be 0.12.
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Verification of precipitation forecasts - Part I
It would be worthwhile to assess LEPS as a verification method for precipitation.

4. Verification of Categorical Forecasts

Categorical forecasts are forecasts of the occurrence or non-occurrence of specific categories of 
the predictand variable. If, for example, one wishes to predict precipitation accumulation over 25 
mm in 6 h, the 25 mm in 6 h amount becomes a threshold for this category, and a categorical 
forecast would be a “yes-or-no” forecast of the occurrence of this event. Categorical forecasts are 
restricted in the information they contain since the forecaster has no means of conveying his 
judgement about the level of uncertainty in the forecast value.

Categorical forecasts are usually verified using contingency tables and various scores associated 
with them. Contingency tables are formed by making a table of all the possible combinations of 
forecast and observed categories, and tallying up the number of forecast-observation pairs that fit 
each combination. To this is added marginal totals formed by summing the rows and columns of 
the table, and the sample size, which appears in the lower right corner as a sum of the marginal 
totals. Though the entries of the table are usually total numbers of events for each forecast-
observation category combination, it is possible to divide through by the sample size and express 
each total as a percentage of the sample. Contingency tables are equivalent to scatter plots; all 
the information of the joint distribution of forecasts and observations is contained in the table. To 
satisfy oneself of this equivalence, it is necessary only to imagine category thresholds imposed 
on a scatter plot, and represented graphically by vertical and horizontal lines drawn at the thresh-
old value. These effectively divide the scatter plot into a table, and the points on the plot can be 
simply summed within each of the boxes so formed, in order to turn a scatter plot into a contin-
gency table for categorized variables.

The dimensions of the contingency table are K x K where K is the number of categories. The sim-
plest and probably the most studied table is for K=2, the 2 x 2 table for verification of two-state 
categorized variables (binary variables). In the following discussion, contingency table scores are 
presented for the 2 X 2 version, but all can be easily generalized to more than two categories. 
Two by two tables are often used in situations where one of the two categories is infrequent and/
or important, to verify specific events of importance, for example the occurrence of extreme or 
severe weather. It is common to present the table with the rarer category as the one of interest, 
associated with the “yes” forecast, and in the upper left of the table. 

Table 3 shows a schematic of a 2 by 2 contingency table indicating the common nomenclature of 
the individual cells of the table. the letters a, b, c, d represent the total events from the sample 
which fit the indicated forecast-observed combination. The marginal totals correspond to the 
marginal (unconditional) distributions of forecast and observed values for the categorical variable. 
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Table 4 summarizes the common verification measures associated with contingency tables, 
along with their formulae and characteristics.

Table 3: Nomenclature for the cells of a 2 by 2 contingency table.

Forecasts
O

bs
er

va
ti

on
s

Yes No Total

Yes
HITS

a
MISSES

b
Total events 

observed

No
FALSE 

ALARMS
c

CORRECT NEG-
ATIVES

d

Total non-events 
Observed

Total
Total events 

Forecast
Total non-events 

Forecast
Sample Size

T

Table 4: Summary of common measures used to evaluate categorical forecasts via 
contingency tables.

Measure Formula
Range; 

best score
Characteristics

proportion correct
Hit Rate (PC)

0 to 1; 1 -Dominated by common categories
-Can be maximized by forecasting the 
most common category all the time.

Probability of detec-
tion (PoD); Prefig-
urance

0 to 1; 1 -sensitive only to missed events, not 
false alarms: can always be increased 
by overforecasting rare events

False Alarm Ratio 
(FAR)

0 to 1; 0 -sensitive only to false alarms, not 
missed events; can always be 
improved by underforecasting rare 
events.

Post-agreement 
(PAG)

0 to 1; 1 -same as FAR

Threat score; Criti-
cal Success Index 
(CSI) or (TS)

0 to 1; 1 -sensitive to both false alarms and 
missed events; a more balanced mea-
sure than either PoD or FAR
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Verification of precipitation forecasts - Part I
Further details on the definition and interpretation of verification measures for both continuous 
and categorical forecasts can be found in Stanski et. al. (1989).

Equitable Threat 
Score (ETS)

0 to 1; 1 -Equitable: correct forecasts of either 
category get same overall score
-Constant forecasts of either category 
get 0
-Threat score adjusted for the number 
expected correct by chance given the 
observation distribution.

Frequency bias 0 to ; 1 -ratio of frequency forecast to fre-
quency observed without reference to 
correctness. 
-comparison of forecast and observed 
distributions.

Heidke Skill Score 
(HSS)

 to 1; 1 -Skill score in the usual format with 
chance as the standard as shown here
-can be computed using other stan-
dards; number correct by standard 
substituted for RHS term.
-chance relatively easy to beat in prac-
tice.

Hanssen-Kuipers 
Discriminant; True 
Skill Statistic (KSS 
or TSS)

 to 1; 1 -an equitable skill score against 
chance
-random forecasts and constant fore-
casts get 0 score
-in practice, gives results a lot like 
PoD
-relates to stratification by observa-
tion, i.e. a measure of discrimination

False Alarm Rate 
(FA)

0 to 1; 0 -false alarms relative to the total 
observations of each category
-usually used in combination with the 
Hit Rate in the calculation of the rela-
tive operating characteristic curve
-not to be confused with FAR, FA is 
rarely used alone.

Table 4: Summary of common measures used to evaluate categorical forecasts via 
contingency tables.

Measure Formula
Range; 

best score
Characteristics
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5. Recommendations

The above discussion leads to several recommendations regarding the verification of precipita-
tion forecasts from the Sydney FDP. These are:
1. Use the gauge data as estimates of the area average precipitation for areas in which the observation 

sites are located. This is preferable to analyzing high resolution datasets that under sample the precip-
itation field. 

2. Carry out ground truth studies of the radar observations wherever possible. Climatological studies of 
spatial precipitation distribution, as revealed by radar, are encouraged to improve estimates of areal 
average precipitation, and, when calibrated by collocated station data, to provide estimates of precipi-
tation at higher spatial resolution.

3. Investigate the LEPS score for precipitation verification.
4. Allow for the expression of observation data probabilistically, with probabilities of the predictands esti-

mated using all available sources of data.
5. Carry out verification analyses at different scales by averaging both model grid estimates and observa-

tions over successively larger areas.
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