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a b s t r a c t

Dynamical downscaling attempts to provide regional detail to climate change projections that subse-
quently can be used as input to climate change impact models. However, unlike forecasts by numerical
weather prediction models, downscaled projections cannot be tested for skill because the future of in-
terest is decades away. Nevertheless, models can be tested in terms of how well they simulate current
weather or climate, thus giving an indication of skill in representing the process of interest. Here, six
configurations using different combinations of three microphysics and two planetary boundary layer
schemes are assessed on their skill to simulate desired characteristics in daily rainfall fields from three
two week simulations in southeast Australia; ‘desired’ meaning desirable in relation to the intended
application. Of different metrics and analysis assessed, a metric based on variography analysis, sum-
marising characteristics about spatial variability and dissimilarity, is shown to provide the most infor-
mative guidance relative to the desirable characteristics.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Forecast verification is a core activity for numerical weather
prediction, providing information on model skill when simulating
weather into the future. As weather eventuates, forecasts can be
compared against the recorded weather for a particular time and
location. In a climate change context, the importance of accuracy in
terms of timing and geographical precision is relaxed, as simula-
tions are representations of plausible climates; simulating weather
far beyond any predictive signal in the internal weather system.
Skill in regional climate change projection is typically assessed by
comparing simulated climatologies with observed ones for multi-
decadal periods (Fowler et al., 2005). For methods such as
dynamical downscaling (the use of a dynamical model to add
regional detail to global climate model projections), long simula-
tion times are associated with large computing costs. Hence, con-
ducting multi-decadal model runs for the purpose of assessing skill
of a particular model setup (e.g. the use of different parameter
schemes) can be prohibitively expensive from a computing
resource point a view.

Nevertheless, assessments of skill in methods used for deriving
regional projections are desirable, as they can inform the level of
confidence attributed to the simulated future climate. But what
verification methods are most appropriate in a climate change
context? In a NWP context, the ability to capture timing and extent
of an event is central to a skilful simulation; hence metrics evalu-
ated on co-locations are meaningful. This is not necessarily true for
models used in a climate change context, where characteristics
such as spatial dependence or full distributional representation
might bemore relevant. Further, the type ormanifestation of model
skill required by a researcher can differ depending on the intended
application and should be reflected in the choice of model verifi-
cation metrics. Here, different metrics and analyses are used to
examine the performance of the more complex microphysics
schemes available for the Weather Research and Forecasting (WRF)
model (Skamarock and Klemp, 2008). The underlying motivation
being an intent to identify the model configuration best suited for
research on water resource planning under climate change for
southeast Australia.

The meso-scale numerical model WRF hosted at the United
State's National Centre for Atmospheric Research (NCAR) supports
a wide range of modelling applications within the weather and
climate community (Caldwell et al., 2009; Chotamonsak et al.,
2011; Coniglio et al., 2013; Del Genio et al., 2012; Done et al.,
2004; Heikkila et al., 2011; Kain et al., 2006; Leung et al., 2006;
Ma et al., 2012). To accommodate its many uses it has a flexible
structure that allows users to select physics and dynamics settings
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that optimise the model for their particular needs. Selecting
parameter schemes and other settings is not necessarily straight-
forward when multiple theoretically comparable schemes are
available to the user. Though numerous assessments of schemes
and settings exist in the literature (Evans et al., 2012; Jankov et al.,
2005; Liu et al., 2012), some testing is sometimes required to assess
performance in a particular geographical area for which there is
limited advice to be drawn from the literature.

The complex microphysics schemes become particularly rele-
vant when the researcher seeks to simulate rainfall at a fine reso-
lution (~4 km), when the resolution is such that convection (at the
grid scale resolution) is explicitly simulated by the model rather
than parameterised (Kain et al., 2006). In a climate change context,
recent research indicate that very fine (~1.5 km) convective-
allowing (or permitting) simulations could be particularly impor-
tant, as these models have the ability to provide a more realistic
simulation of hazardous high intensity rainfall events (Kendon
et al., 2012) and thus theoretically an improved understanding of
plausible impacts to extreme rainfall events under changing
greenhouse concentrations (Kendon et al., 2014; Westra et al.,
2014).

However, very fine resolution regional climate models are
computationally very expensive in terms of processing (increased
iterations) and storage (volume of output), as climate simulations
require significantly longer simulations than NWP models (that
simulate for temporal domains bounded by days rather than de-
cades) to allow detection of a change in the climate signal. Thus,
with finite computing resources, researchers conducting down-
scaling with meso-scale dynamical models have tomake important
decisions around the extent and the resolution of the spatial and
temporal model domain of their experiment. This is particularly
relevant if output is intended to inform on policy, since the re-
searchers should balance the potential added value of realism (by
increasing the resolution of an experiment) against adequately
representing the typically large uncertainty in projected rainfall
stemming from lack of knowledge about future emissions, and in-
adequacies in simulating the global climate response to these
emissions (see discussion in Ekstr€om et al. (2015) in their appraisal
of downscaling methods). In short, increasing the model resolution
may hamper ability to sample the climate signal contained in an
ensemble of global climate models (i.e. conducting downscaling
only on a small sample of global models).

If limitations in computing resources exist, it is sensible to first
test whether very fine convection-allowing configurations can add
value relative to the intended application. Whilst recent experi-
ments indicate that this is indeed the case for extreme rainfall
impact assessments, it is not immediately clear that the finer res-
olution experiments add value for impact research in a water
resource application; where the scale relevant to the topic is greater
both in time (seasonal to annual rainfall) and scale (typically
rainfall across multiple catchments) compared to the scale relevant
to represent individual rainfall events generating extreme rainfall.

To assess whether fine resolution experiments are application
appropriate for water resource impact research in southeast
Australia, there is an interest in using WRF to conduct a multi-year
simulation to assess relative differences in parameterised versus
explicitly resolved convection. Given the multiple configuration
options available, an assessment of physics parameter scheme op-
tions is desirable to ensure that the most appropriate configuration
is used to conduct a multi-year simulation for current climate (a
long simulation period being required to derive robust estimates
about average climate conditions, so called climatologies). Of
course, crucial to the assessment is the definition of ‘appropriate’.
What skills or characteristics are desired of the model and what
metrics can be used to quantify these skills to enable a performance
ranking of differently configured models.
This paper demonstrates learnings from a case study in south-

east Australia, where application relevant combinations of WRF
physics scheme combinations are assessed on their ability to cap-
ture gross spatial, temporal and distributional characteristics
desired from rainfall fields intended for impact work in the water
resource domain.

2. Methods and data

2.1. WRF setup

The simulations presented here are generated using WRF
version 3.6.1 with the Advanced Research WRF (ARW) dynamical
core. A one-way telescopic nest with 3 spatial domains using a
Lambert conformal projection is used. The outer nest (D01) cover
the Australian continent into the Southern Ocean with a 50 km
resolution, the intermediate domain (D02) focus on southeast
Australia and coastal waters with a 10 km resolution, and the
innermost domain (D03) include the southernmost part of the
Great Dividing Range and its western slopes at a spatial resolution
of 2 km (Fig. 1a and b). The model has 50 vertical levels in the at-
mosphere and tops out at 10 mb. Spectral nudging is applied to
larger scale features in the wind and geopotential fields in the
upper atmospheric layers of the outer model domain (D01) only.

As noted earlier, the WRF model is highly configurable and al-
lows the user to select schemes appropriate to their intended
application. Here, physics schemes were selected based on their
appropriateness for simulations in a climate change context and for
representation rainfall on a 2 km resolution (allowing for explicit
simulation of convective rainfall). Guidance on parameter selection
are given in the ARW user's guide (NCAR, 2013) and from peer
review literature. For this application a pertinent study is Evans
et al. (2012), who tested 36 different physics schemes combina-
tions for the purpose of dynamical downscaling. A detailed moti-
vation for the selection of physics parameter schemes used here is
available in Ekstrom (2014), hence only a brief summary of options
and key motivation for their selection is given below.

The rapid radiative transfer model for global applications
(RRTMG) (Iacono et al., 2008) was used for the radiation schemes of
the long and short wave spectra; this scheme is recommended for a
1e4 km resolution case in the ARW user's guide and allows for
temporally varying greenhouse gas concentrations relevant for a
future climate change implementation. The mixing of surface heat
and moisture fluxes into and onwards within the boundary layer is
governed by the land surface model, the surface physics scheme
and the planetary boundary layer (PBL) scheme. With respect to
convective permitting experiments Coniglio et al. (2013) compared
three ‘local’ schemes and two ‘non-local’ PBL schemes, where local
refers to closure schemes that consider only adjacent fields when
solving equations for unknown variables in estimating the vertical
mixing. Low biases are reported for the local Mellor-Yamada
Nakanishi and Niino (MYNN) (Nakanishi and Niino, 2006) Level
2.5 scheme, and hence this schemewas selected for theWRF setup.
The PBL scheme has strong influence on rainfall simulations in this
region (Evans et al., 2012). For this reason, the non-local Yonsei
University (YSU) scheme (Hong et al., 2006) was included to
represent uncertainty in using conceptually different methods; a
scheme that has been applied with success in a southeast Austra-
lian context (Evans et al., 2012). The PBL schemes were used in
combination with the MM5 surface physics scheme and an inter-
mediate complexity land surface model (Noah LSM).

Even though convection is explicitly resolved in D03, a
convective parameter scheme is required to represent rainfall
generated by convection on sub-grid cell scales in D01 and D02. In



Fig. 1. In panel a): the spatial dimensions of the outer domain D01 at 50 km resolution, the intermediate domain at 10 km resolution and the innermost convective permitting
resolution domain (at 2 km resolution). The red markers denote the native model domain and the black markers indicate the model domain after the relaxation zone of 10 grid cells
is removed. In panel b): the topography (metres) of D02 with state boundaries and boundaries of D03 overlayed (red and black lines denote the native and native minus relaxation
zones). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Evans et al. (2012) two cumulus schemes were tested, the Kain-
Fritch and the Betts-Miller-Janjic (BMJ) scheme. The former gave
consistently poor results when combinedwith PBL scheme YSU and
radiation scheme RRTMG. For this reason, the Betts-Miller-Janjic
(BMJ) scheme was used. The BMJ scheme is an ‘adjustment type’
whereby values are relaxed towards a post-convective (mixed)
sounding (Janjic, 2000, 1994).

The microphysics (MP) scheme is responsible for heat and
moisture flux within the atmosphere and gives the surface resolved
rainfall. Initially all five double moment schemes available for WRV
3.6.1 were considered. However, two schemes repeatedly failed
when run in combination with physics options above, hence only
three schemes remained for further analysis, these are: the WRF
double moment 6-class scheme (WDM6) (Lim and Hong, 2010), the
Thompson scheme (Thompson et al., 2008), and the Milbrandt
scheme (Milbrandt and Yau, 2005). With two PBL schemes in
combination with 3 microphysics schemes, a total of six physics
scheme combinations are compared here (Table 1).

2.2. Boundary and verification data

The WRF simulations were run using six hourly inputs from the
re-analysis data set ERA Interim (Dee et al., 2011) using climate
information from: the surface, 37 pressure levels, and 4 sub-surface
levels. All fields having a spatial resolution of approximately 80 km.
ERA Interim data are assimilated into WRF simulations along the
lateral and lower boundaries of the outer domain (D01) with a
lateral relaxation zone of 10 grid cells. This re-analysis product has
Table 1
List of WRF physics scheme options for each ensemble member (N1eN6).

Nb PBL MP Surf_phys RA sw/lw LSM CU D01/D02

1 MYNN WDM6 MM5 RRTMG Noah BMJ
2 MYNN Thompson
3 MYNN Milbrandt
4 YSU WDM6
5 YSU Thompson
6 YSU Milbrandt
previously been used in this region in a downscaling context to
investigate performance of WRF to simulate the broader climate
(Evans et al., 2012) and rainfall characteristics in conjunction with
the East Coast Lows (Gilmore et al., 2015; Ji et al., 2014). Digital
elevation data from the 9 s digital elevation model of the Geo-
science Australia and the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) of Australia was used instead of the
topography information provided with WRF for domain D02 and
D03. The 9 s data set was smoothed to reduce impact by steep relief
on the simulations using WRF's pre-processing system (WPS).

Due to the particular interest in the influence of the micro-
physics scheme on fine resolution rainfall, all verification analysis
of simulated data are conducted on the inner domain (D03, 2 km
resolution). The skill of the two coarser domains (D01 and D02, 50
and 10 km resolution respectively) are to some extent implicitly
accounted for in this analysis through the nested model structure,
i.e. poor skill in D01/D02 would likely lead to poor skill in D03.

Model simulations for D03 are assessed against 5 km gridded
observed daily rainfall totals from the Australian Water Availability
Project (AWAP) (Jones et al., 2009) produced by the Australian
Bureau of Meteorology, and atmospheric sounding data of water
vapour mixing ratio (WVMR, g/kg) and temperature (�C) from the
Wyoming Weather Web station 94866 YMM (37.66�S, 144.85�E) at
Melbourne Airport at 00 UTC (corresponding to 10 am Eastern
Standard Time (EST) in winter, and 11 am Eastern Daylight Time
(EDT) in summer).

For comparison with the coarser resolution AWAP data, the
output fields for D03 were re-interpolated onto the regular latitude
longitude coordinates of AWAP using routines from the Earth Sys-
tem Modelling Framework (ESMF)1; the re-interpolated area
framed by coordinates 35.55�e39� S and 143.20�e149.30� E at
0.05� resolution. Note that whilst AWAP is used as a representation
of reality, it is a smoothed gridded product with its own associated
uncertainty. For the state of Victoria, error estimates based on
cross-validation of daily/monthly rainfall are typically less than 5/
1 https://www.earthsystemcog.org/projects/esmf/.
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25 mm, as estimated over the period 2001 to 2007 (Jones et al.,
2009). Hence biases between simulated and observed data will
comprise elements of uncertainty of both data sets.

2.3. Case study periods

Three 15 day case study periods were selected for testing the
selected WRF configurations. These represent different synoptic
conditions associated with events of intense rainfall during the
2010e11 period of extended flooding in the state of Victoria, and
seasonal variability: cool season (AprileOctober), warm season
(November to March), and the shoulder period between the two
seasons. For all simulated periods, the first day was discarded as
spin-up.

During the cold season case study (8th to 21st of August 2010),
rainfall occurs in conjunction with an upper level trough and low
level cold front associated with a low pressure system. This system
develops on the 10th of August over Victoria and subsequently
moves westward over the next few days. Further passages of cold
fronts occur during the period 15the17th and again on the
19the20th of August. The shoulder season case study (6th to 19th
October 2010) include rainfall from passages of cold fronts on the
7th and an upper level trough on the 13th followed by intense
rainfall associated with a deep low centred over Victoria on the
15th and 16th. The warm season case study (31st January to 13th
February 2011) include the passage of tropical cyclone Yasi far
north of the study area; its northern passage enabling advection of
amoist tropical air mass ahead of awesterly approaching prefrontal
trough.

2.3.1. Selected case study days
For all but the temporal assessment of daily rainfall amounts,

two non-consecutive days per case study period simulation were
selected for the verification exercise (see section 3.1); the selected
days being those with the largest recorded rainfall totals. The sub-
selection of days was made to maximise opportunity to discrimi-
nate between simulations, as the influence of using different
physics options tend to be greater for heavy rainfall events (Evans
et al., 2012).

These days are referred to as Day 1e6, where Day 1 and 2 are day
4 and 12 of C1 (11th and 19th of August 2010); Day 3 and 4 are day 2
and 11 of C2 (7th and 16th of October 2010); and Day 5 and 6 are
day 6 and 12 of C3 (5th and 11th of February 2011). Their synoptic
characteristics are displayed in Fig. 2 showing a low pressure centre
located immediately south of domain D03 for Day 1; a cold front
passage on Day 2; Day 3 and 4 experience strong westerly and
southwesterly winds following the passage of a cold front; and an
upper level trough with southerly winds to the west and northerly
winds to the east on Day 5 and 6 (noting the weakened Tropical
storm Yasi over the centre of Australia on Day 5).

2.4. Skill metrics and analyses

The measure of skill needs to be relevant to those characteristic
that are desired of the simulated rainfall field, bearing inmindwhat
can be expected reasonably in terms of performance (given model
structure and quality and frequency of input data). The intended
application for theWRF set-ups presented here is that of dynamical
downscaling, where rainfall fields are of particular interest.

Because the model simulates its own climate guided by ‘reality’
only at its outermost domain (and the initial starting conditions in
all three domains), high accuracy in the spatial distribution of
rainfall is perhaps only reasonable to expect when caused by large
scale, well defined, synoptic features such as frontal passages,
rather than convective rainfall (noting that in a climate change
simulation, the information by a global climate model is likely to be
provided on a coarser spatial and temporal resolution compared to
that of ERA Interim). For this reason, the metrics relevant to this
assessment should attempt to quantify skill that relate to general
characteristics of the rainfall event, such as: the total magnitude of
rainfall associated with the rainfall event in the simulate region,
ability to capture the full spectra of observed rainfall intensities at
the simulated scale, realistic simulation of the typical scale of
rainfall (the spatial extent of rainfall events). Of lesser importance is
skill measured by metrics based on continuous and categorical
statistics, as these are derived from space and time corresponding
coordinates. In this aspect we are accepting less accuracy than
verification exercises in a NWP forecasting context.

Unlike spatially continuous fields such as temperature, rainfall is
event based; its characteristic different in time and space
depending on the process responsible for genesis. For this reason
standard methods based on continuous (e.g. root-mean-square
error (RMSE), spatial correlation) and categorical statistics (met-
rics based on scores of hits/misses/false alarm/correct rejects in
contingency tables), described in depth in by Wilks (2006) are
accompanied by more elaborate methods that consider other as-
pects, such as spatial displacement, magnitude and orientation
errors, and examining relative skill at different scales. A compre-
hensive review and examples of these methods are found in
Gilleland et al. (2009, 2010), who suggest a broad categorisation of
these methods into four types: 1. Scale separation/decomposition,
2. Neighbourhood/fuzzy, 3. Features/object based and 4. Field
deformation/morphing.

Scale separation or decomposition approaches typically involve
some form of filtering to enable assessment on different spectral
scales (Casati, 2010), neighbourhood or fuzzy methods apply
smoothing filters to fields, comparing the ‘footprint’ of a rainfall
event rather than grid-cell specific comparison (Roberts and Lean,
2008). Feature or object based methods focus on particular attri-
butes of rainfall fields (e.g. in displacement, orientation or size) (Li
et al., 2015; Ebert and Gallus, 2009), and field deformation or
morphing methods derive distortion vectors that allow field wide
manipulation of the simulated field to resemble (morph into)
observed characteristics (Gilleland et al., 2009). All approaches
provide information on skill, though the aspect of skill varies
amongst methods.

For this verification exercise, a neighbourhood method is
selected as a meaningful metric (see section 2.4.1), noting that it
provides information on models that “… may not pinpoint the
exact location of each storm cell, but they can correctly place the
overall envelope of precipitation”. (Gilleland et al., 2010: p.1369). It
is however noted that this type of approach is not able to give in-
formation on skill about structural errors in the rainfall field. For
this reason a variography analysis is conducted, by which spatial
characteristics of rainfall fields in terms of dissimilarity scale and
variance are captured in the parameters of the variogram model
(Lepioufle et al., 2012; Emmanuel et al., 2012) (see section 4.2.2).
Other approaches to assess spatial characteristics are possible, such
as assessment of the spatial cross-correlation relationship (Burton
et al., 2013). The techniques of geostatistics used for the variog-
raphy analysis are however attractive in that the theory is well
established and multiple software and open source code offer
robust model fitting (Deutsch and Journel, 1998; Chiles and
Delfiner, 2012; Isaaks and Srivastava, 1989).

Temporal agreement in daily rainfall occurrence and amount is
further used as an indication of skill in the overall simulation of the
synoptic circulation, whilst quantileequantile plots give an indi-
cation of ability to represent observed daily rainfall totals. Further,
different characteristics of WRF ensemble members are gleaned
from comparing vertical profiles of simulated water vapour mixed



Fig. 2. Mean sea level pressure charts for the 11th and 19th of August 2010 (a and b), 7th and 16th of October 2010 (c and d), and the 5th and 11th of February 2011. The maps are
sourced from the online Weather Map archive of the Australian Bureau of Meteorology.21
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ratio and temperature to sounding measurements fromMelbourne
airport and horizontal plots of temperature and moisture fields at
near surface pressure levels.
2.4.1. Neighbourhood analysis
Neighbourhood (or fuzzy analysis) lends itself well to verifica-

tion of fine resolution experiments by reducing the impact of
double penalty in the analysis, i.e. the instances where a forecast is
penalised because it forecasted rain where none occurred and
further did not forecast rain where it occurred and thus penalised
twice (Ebert, 2008). Rather than expecting skill on grid cell level,
the neighbourhood method expects skill across a predefined
‘neighbourhood’ or window. The metric used here is that of the
Fractions Skill Score (FSS) (Roberts and Lean, 2008; Mittermaier
et al., 2013), where forecasted and observed rainfall fields are first
translated to binary fields with values of 1 denoting grid cells with



Fig. 3. Rainfall totals (mm/day) within domain D03 for AWAP (green) and WRF sim-
ulations (orange). The best fit (MAE) is shown in red and identified in top right legend.
The panels show case study 1 (a), case study 2 (b) and case study 3 (c). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
For each case study and domain, the mean absolute error (MAE) and root square mean error (RMSE) of daily rainfall total per simulation (N1eN6). Metrics are based on daily
rainfall totals accumulated for the common spatial domain (35.55�e39� S and 143.20�e149.30� E). Yellow highlight indicate the lowest value, and red highlight indicate second
lowest value.
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recorded rainfall over a particular threshold of interest, absolute or
percentile value (in this instance, exceedances of the 90th
percentile), then assessed according the fractional rainfall occur-
ring within the neighbourhood. The FSS metric (eq. (3)) is then
2 http://www.bom.gov.au/australia/charts/archive/index.shtml.
estimated from the mean square error (MSE) of the observed (O)
and modelled (M) fractions from a particular neighbourhood (n)
(eq. (1)), a reference value MSE(n)ref (eq. (2), best possible MSE) and
the MSE for a perfect forecast MSE(n)prefect ¼ 0:
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1
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¼ 1� MSEðnÞ

MSEðnÞref
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2.4.2. Variography analysis
The experimental variogram describes the dissimilarity be-

tween data points as a function of distance. Ormore specifically, the
expected squared difference between values of the intrinsic
random function Z(x) at separation distance (or lag) h:

2gðhÞ ¼ E
n
½ZðxÞ � Zðxþ hÞ�2

o
(4)

The semi-variogram, is half that of the expected squared dif-
ference and provides a measure of variability that increases as data
points become more dissimilar.

The semi-variogram construct holds true if the random function
Z(x) is intrinsically stationary, i.e. that the expectation of [Z(x)-
Z(xþh)]2 is constant across the assessed domain. Here, the random
function is that of daily rainfall totals and the spatial domain the
geographical extent of D03. It is reasonable to expect that condition
of intrinsic stationarity is violated as one might expect the
dissimilarity in daily rainfall totals across D03 to depend not only
on distance but also on geographical location (e.g. across the Great
Dividing range relative to other areas) and rainfall type (e.g.
convective versus stratiform rainfall). However, whilst intrinsic
stationarity is crucial if the semi-variogram is to inform further
analysis across the entire domain (such as mapping), it is less
relevant here as the semi-variogram is used to capture average
spatial dissimilarity or simply put, give a ‘spatial signature’
encapsulating the characteristics of the considered data set.

Well-established geostatistical techniques exist for calculating

http://www.bom.gov.au/australia/charts/archive/index.shtml


Fig. 4. Daily rainfall totals (mm) for selected Days 1e6 over domain D03. Top panel shows observed (AWAP) and following rows of panels show daily totals of WRF simulations
N1eN6. All maps have resolution 0.05� (~5 km).
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the empirical variogram (visualised by plotting the semi-variance
(y-axis) with associated lag (x-axis)) and characterise its shape.
The latter is done by fitting a suite of possible theoretical variogram
models to the empirical semi-variogram. These models typically
have two parameters that determine their two-dimensional shape,
the sill and range. The former representing the zero-correlation
semi-variance and the latter the spatial distance (lag) associated
with the sill. Some empirical semi-variograms do not exhibit a well
defined plateau for zero-correlation, in these instances the range is
taken as an arbitrary 95% of the distance at which the sill parameter
is estimated (Isaaks and Srivastava, 1989). A fitted model that does
not have zero semi-variance at zero lag is said to have a nugget
effect; typically interpreted as variance due to measurement error
and variability in the data set on shorter range than the minimum
sampled data spacing. Here, empirical semi-variograms were
calculated and models (exponential, spherical, Gaussian and cir-
cular) fitted using geoR (Diggle and Ribeiro Jr., 2007). All models
were fitted using ordinary least squares; the automated fitting
proceduremaking use of about 60 different initial starting values of
the sill and range parameters. For each empirical variogram, the



Fig. 5. Quantileequantile plots of daily rainfall totals (mm) for selected days Day 1e6 over domain D03. Observed (AWAP) percentiles follow the x-axis and WRF simulation
percentiles follow the y-axis. Columns separate simulation days and rows correspond to different WRF simulations (N1eN6).
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model with best fit was kept for the computation of the variography
metric.

A metric is estimated by considering the location in parameter
space defined by coordinates given by the sill (including nugget)
and range (both parameters normalised by their respective mean
and standard deviation). The metric is simply the inverse Euclidean
distance between the location of the observed (AWAP) parameters
and those of the WRF simulation, so that simulations further away
in parameter space has a smaller metric (see demonstration in
Fig. 8). This metric was previously used as weights to combine
projections of extreme rainfall fields for the UK (Fowler and
Ekstr€om, 2009).
3. Results

3.1. Daily rainfall characteristics

For comparison with observed daily rainfall fields WRF



Fig. 6. FSS metric as calculated on the 90th percentile of daily rainfall (mm) across domain D03 for each of the selected days (Day 1e6) and WRF configuration (N1eN6, see legend).
Grey lines denote lower and upper limits of the FSS metric (0 and 1), and the lower limit of skilful forecast (0.5).

Table 3
The FSS for selected days (Day 1e6) for a neighbourhood of 105 km. Yellow marking note the highest scoring model simulation, whilst red marks the second highest scoring
simulation.

M. Ekstr€om / Environmental Modelling & Software 79 (2016) 267e284 275



Fig. 7. Empirical variograms (symbols) and fitted variogram models (lines) for AWAP (grey) and model simulations (N1eN6, see legend) for selected days (Day 1e6).
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simulations for D03 were regridded to the regular 0.05� latitude
and longitude coordinates of AWAP. If aggregating rainfall across
the entire domain, rainfall totals and the sequencing of events are
overall well captured for the case studies (Fig. 3). For the winter
case study (C1), daily rainfall totals are somewhat lower than
observed on day 12 for the majority of ensemble members with the
exception of best fit ensemble N1; the best fit calculated as the
member with the smallest mean absolute error (MAE). In the
shoulder season (C2), the overall timing of events are well simu-
lated but magnitudes are somewhat overestimated, the maximum
rainfall occurring on day 10 rather than day 11 (the best fit provided
by ensemble member N6). The largest error in terms of magnitude
is found in the summer case study (C3) on day 6, when rainfall
amounts are underestimated by about approximately half of that
observed. However, totals on other days are overall well captured,
the best fit provided by ensemble member N1. If using the RMSE
instead of MAE as a measure of best fit, N3 ranks somewhat higher
than N1, reflecting the larger influence of large biases in this metric
(Table 2).

The following assessments are based on the 6 selected days (2
non-consecutive days per case study) referred to as Day 1e6 (see
section 2.3.1). A map of the daily rainfall total for each selected day
is displayed in Fig. 4, where the top panels show observed rainfall
totals based on gridded AWAP data and subsequent rows illustrate
realisations as simulated by WRF configurations N1 to N6.

For Day 1 the location of rainfall is similar in position, but has a
wider footprint compared to observed rainfall (Fig. 4). With the
exception of ensemble member N4, simulated rainfall fields appear
to be similar in magnitude relative to the observed data. Across
ensemble members, those using PBL scheme YSU (N4-6) appear to
simulate the higher intensity rainfall further east compared to
observed patterns. Day 2 shows rainfall across the northern regions



Fig. 8. Scatterplot of the normalised sill (y-axis) and range (x-axis) parameter values
for all AWAP and WRF configurations (N1eN6) for selected Day 1. The resulting inverse
distance calculated for N1eN6 relative to AWAP are shown in the first row of Table 4.
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of D03 with larger totals over the Great Dividing Range. Simulated
rainfall fields generally have good position of rainfall, but the extent
is typically smaller and for many ensemble members the high
rainfall amounts are greater than the observed amounts. For Day 2,
rainfall patterns of pairs with the same MP scheme appear similar,
i.e. larger magnitudes and extent when using WDM6 (N1 and N4),
compared to Thompson (N2 and N5), and even more so in com-
parison toMilbrandt (N3 and N6). Simulated rainfall fields for Day 3
typically have larger magnitudes compared to observed rainfall
(particular for N1, N3, and N4) with a larger extent, more so for
ensemble members using PBL scheme YSU compared to MYNN.
Day 4 and 5 show heavy rainfall events that are underestimated by
all ensemblemembers in spatial extent andmagnitudes. In terms of
location, simulations do a reasonable job for Day 4, but for Day 5
heavy rainfall to the east of Melbourne is not captured by any
model. For Day 5 there is a clear difference between simulations
using PBL scheme MYNN and YSU, where the latter appears to
generate a more wide spread and less intense rainfall field. Simu-
lations for Day 6 do not capture the location of the observed rainfall,
but rainfall magnitudes are overall reasonable.

The quantileequantile plots illustrate the agreement in terms of
distributional characteristics between observed and simulated
rainfall fields for each of the selected days (Fig. 5). Though some
plots show large similarities between observed and simulated
rainfall, a 2 sample Kolmogorov Smirnov test (a¼ 0.05) rejected the
Table 4
Weights derived from variography analysis, calculated as the inverse distance between A
(sill þ nugget and range). Yellow marking note the highest scoring model simulation, w
null hypotheses that samples were drawn from the same popula-
tion for all days. Many of the features noted by a visual inspection of
the maps are evident in these plots. Day 1 shows large similarity in
observed and simulated magnitudes, with the exception of some
overestimation of rainfall above 50 mm in N4. Day 2 shows some
overestimation of higher magnitudes for ensemble members using
MP scheme WDM6 (N1 and N4), and to a lesser extent when using
Thompson in combination with MYNN (N2). Other ensemble
members show a slight underestimation of magnitudes. For Day 3,
all simulated fields overestimated observed magnitudes, more so
by N1, N3 and N4. For Day 4e6, all ensemble members typically
underestimated observed rainfall magnitudes, less so for N1. For
Day 5, simulated and observed rainfall distributions appear to be
more similar for simulations using PBL scheme MYNN (N1e3).

Using the FSS metric and variogram model parameters, we
attempt to qualify and quantify characteristics of the simulated
patterns relative to the observed patterns. The FSS metric was
calculated using rainfall totals exceeding the 90th percentile for
each simulation and a range of neighbourhood sizes (15e195 km)
(Fig. 6); thus focussing on areas with heavier rainfall. Following
Mittermaier and Roberts (2010), if the observed fractional rainfall
across the region is small then acceptable scores are considered
FSS>0.5. From this perspective, acceptable skill according to this
measure is only achieved for Day 2 and 4 at all scales and for scales
above 100 km for Day 3 and 5. No acceptable skill was achieved for
any ensemble member at any scale for Day 1 and 6. Though there is
spread amongst ensemble members, the variation amongst
ensemble members is much less compared to skill given by any
particular ensemble member across Days 1e6. Amongst the
ensemble members, FSS scores for N4 tend towards the higher end,
and those associated with N6 (Day 5 being a clear exception) to-
wards the lower end of the range. If considering the best scoring
members at 100 km (typical scale for mesoscale convective sys-
tems), the WDM6MP scheme appears to performwell; the highest
score given in combination with PBL scheme MYNN (N1) on Day 1
and 2, and with PBL scheme YSU (N4) on Day 5 and 6 (this
configuration also gave the second best score for Day 4) (Table 3).

To assess the spatial characteristics of the daily rainfall omni-
directional (considering dependence in all directions) empirical
semi-variograms was calculated for each simulated rainfall field
(Day 1e6) and theoretical semi-variogrammodels fitted (Fig. 7). For
Day 1 and 2, the simulated fields show more variability compared
to observed fields (as shown by a larger sill for simulations), whilst
on Day 4, 5 and 6 the observed variability is typically larger,
particularly for Day 4 and 6. Using an inverse distance metric, a
weight representing the proximity of the sill and range of simulated
fields to those of the observed rainfall in a normalised Euclidean
parameter space was calculated for all selected days. A graphical
demonstration of the metric is shown in Fig. 8 for Day 1. Markers
WAP and model output in a coordinate space defined by the variogram parameters
hilst red marks the second highest scoring simulation.



Fig. 9. Sounding data fromMelbourne airport (full line) and corresponding values for closest matching grid cell (dotted line) of mixing ratio for water vapour (WVMR, g/kg) in black
and temperature (�C) in red for each selected rainfall day (Day 1e6) and ensemble member (N1e6). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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show the similarity of the normalised sill and range values of WRF
configurations (N1eN6) relative to those of the observed rainfall.
The graph shows that markers for N1 and N2 are closest in
‘parameter space’ to the observed marker, resulting in larger metric
values (inverse distance) relative to other WRF configurations (row
1 of Table 4). The variography metrics for Day 1e6 are summarised
in Table 4 and shows that simulations of N1 are frequently most
similar, or second most similar to observed rainfall.
3.2. Pressure level analysis

To gain a richer understanding of how the simulations differ in a
physical sense, moisture and temperature characteristics of the
WRF configurations are assessed relative to each other. Grounding
the comparison to ‘reality’ is made by comparing output on pres-
sure levels with observed sounding data; noting that whilst the
sounding does represent observations of the atmosphere, the data



Fig. 10. Temperature (K) at 900 mb pressure level for selected Day 1 (10 am EST) and all ensemble members N1e6. Wind direction is overlayed to indicate air-mass movement. The
markers show the location of the sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the markers overlap.

Fig. 11. Temperature (K) at 900 mb pressure level for selected Day 5 (11 am EDT) and all ensemble members N1e6. Wind direction is overlayed to indicate air-mass movement. The
markers show the location of the sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the markers overlap.
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Fig. 12. Water Vapour Mixing Ratio (WVMR, g/kg) at 900 mb pressure level for selected Day 1 (10 am EST) and all ensemble members N1e6. Wind direction is overlayed to indicate
air-mass movement. The markers show the location of the sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the
markers overlap.
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includes a location bias due to spatial drift as the balloon rises
(McGrath et al., 2006). By viewing the sounding data in combina-
tionwithmaps of temperature andmoisture content (water vapour
and rain water mixing ratio) at relevant pressure levels, it is
possible to give the vertical assessment a spatial context.

Fig. 9 shows the sounding data for selected rainfall days
(Day1e6) and ensemble members (N1e6). In all simulations,
observed and simulated temperatures show similar vertical pro-
files, with the exception of simulated temperatures being some-
what higher or lower than observed at pressure levels above
400 mb on Day 1 and 2 and somewhat higher surface temperatures
on Day 5 for ensemble member N2. Less agreement is shown in
moisture profile. For Day 1 all simulations tend to overestimate the
amount of water vapour in the lower levels of the atmosphere and
for Day 2, 3 and 4 simulations capture the overall characteristics of
the observed profile with some common discrepancies. These
include underestimation at elevations above 600 mb for Day 2 and
overestimation at near surface levels (1000mb) in Day 3. Thewarm
summer-atmosphere of Day 5 and 6 show a greater moisture
content and larger vertical variation compared to other selected
days. The graphs show larger variation amongst the ensemble
members than for previous days and no ensemble member shows a
close resemblance to observed, though some agree more than
others at different levels in the atmosphere. For Day 5, MP scheme
WDM6 gives the smoothest vertical profile of all MP schemes (more
so in combination with PBL scheme MYNN; N1) but does not cap-
ture the lower moisture levels around 800 mb. The Thompson MP
scheme gives a similar profile to that of WDM6 for Day 5, but with
underestimation at upper troposphere levels (more so when in
combination with PBL scheme MYNN; N2) and overestimation of
moisture content at lower levels when in combination with PBL
scheme YSU (N5). The MP scheme Milbrandt appear to show the
largest similarity to observed, particularly at lower levels in the
atmosphere (>800mb). For Day 6, the moisture profile of ensemble
members using MP scheme WDM6 again show a ‘smooth’ charac-
teristic (as for Day 5, more so when in combination with PBL
scheme MYNN; N1). Furthermore, ensemble members using MP
scheme Thompson and Milbrandt (in combination with YSU) all
underestimate moisture content above 600 mb (N2, N5 and N6). In
summary, ensemble members show similar biases towards
observed profiles, though there are exceptions. Such as the mixed
simulated representation of the zone of lower moisture content at
800 mb level on Day 5 and at 550 mb on Day 6.

To assess physical differences amongst the simulations maps of
temperature and moisture content at a near surface level (900 mb)
were mapped for all selected days (at 10 am EST for Day 1 and 2,
and 11 am EDT for Day 3e6) for the D03 region (a marker indicating
the location of the flux tower measurements is plotted in Fig. 9).
Here, results are only displayed for Day 1 and 5, but maps for other
days are available as supplementary material (including positive
vertical winds).

The focus on lower levels is motivated by an interest to assess
the influence of the physics schemes on the heat and moisture
fluxes from the surface into the boundary layer of the atmosphere;
reflecting skill in processes relevant to the models ability to simu-
late convective movement. However, note that whilst these maps
elucidate differences amongst simulations, skill is difficult to
attribute to individual configurations in absence of observational
data. Some indication of skill may be gleaned from comparing the
agreement in physical properties at the lower levels with the
simulated rainfall response and the corresponding observed
pattern (e.g. Fig. 4).



Fig. 13. Water Vapour Mixing Ratio (WVMR, g/kg) at 900 mb pressure level for selected Day 5 (11 am EDT) and all ensemble members N1e6. Wind direction is overlayed to indicate
air-mass movement. The markers show the location of the sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the
markers overlap.
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A comparison of near surface temperature fields for the selected
days show that simulations using the MYNN PBL scheme typically
have a larger range in temperatures with greater spatial variability
compared to those using YSU (Figs. 10 and 11). Temperatures in
MYNN are typically a bit cooler (as shown for Day 1, but also visible
in Day 5 particularly in the cooler air mass). This characteristics of
greater spatial variability and variable range in MYNN simulations
is also seen in the moisture fields, albeit not as clearly as for tem-
perature (Figs. 12 and 13). For example, note the higher water
vapour content of YSU compared to MYNN (particularly in Day 5
relative to Day 1). The warmer andmore moist simulations of N4 to
N6 may be related to the stronger mixing by the non-local YSU
scheme relative to the local MYNN scheme; a local response in
accordance with findings by Coniglio et al. (2013).

Viewing the patterns of temperature and moisture fields with
maps of daily rainfall totals (Fig. 4) suggests an explanation for
differences in simulated rainfall responses for Day 1, less so for Day
5. For Day 1, rainfall of MYNN PBL simulations (N1e3) give highest
rainfall rates along the southern coastline around 144� E, whilst the
YSU PBL simulations indicate the highest rainfall rates around 146�

E (Figure 4, 1st column). Both temperature and moisture fields (and
overlayed wind fields) for Day 1 show that the rainfall response
follows an air mass boundary that is differently simulated by the
two schemes (Figs. 10 and 12). In this instance, the location of the
event in observed rainfall is more similar to that of the MYNN
realisations (N1eN3). Day 5 offers a more complex synoptic situ-
ation for the simulated region compared to Day 1, as described in
section 2.3.1. The temperature and moisture maps clearly show the
demarcation between the moister air mass to the north and a
cooler and drier air mass to the south (Figs. 11 and 13). For Day 5,
WRF simulations show a simulated rainfall response that appear
strongly influenced by the PBL scheme (Fig. 4). The simulations
using the MYNN scheme (N1eN3) show heavy local rainfall
compared to the widespread, but not as heavy, rainfall totals of the
YSU simulations. Observed rainfall for Day 5 (Fig. 4) appear to agree
more with simulations of MYNN, though the snapshots of tem-
perature and moisture content from near midday does not offer a
clear indication as to why.

For both days, maps of rain water mixing ration (RWMR, kg/kg)
give an insight to characteristics of the MP schemes (Figs. 14 and
15). Higher rain water concentrations (and somewhat lesser
spatial extent of the rainfall event) are found for the WDM6
schemes (N1 and N4), less so for Thompson (N2 and N5) and even
lesser so for Milbrandt (N3 and N6). Without radar informed
rainfall depths, it is difficult to assess which configuration is more
similar to observed rainfall intensities, noting that N1 and to a
lesser degree N4 scored well on the variography metric that looks
as the spatial variance and dependence structure (Table 4).
4. Discussion and conclusions

Ensemble members assessed here differ only in two aspects:
having a different combination of PBL and MP physics schemes. All
tested schemes are standard options of WRF and as such are all
expected to do well. The purpose of this assessment is to identify a
configuration with characteristics that are desirable for water
resource impact assessments using easy to implement metrics and
analyses. Qualities that are deemed relevant are: timing of events
(an indication of how the model simulates the movement of mass
in the model domain); distributional qualities (ensuring that the
full range of observed magnitudes are simulated); spatial extent
and spatial characteristics (simulating rainfall processes that



Fig. 14. Rain Water Mixing Ratio (RWMR, kg/kg) at 900 mb pressure level for selected Day 1 (10 am EST) and all ensemble members N1e6. The markers show the location of the
sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the markers overlap.
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adhere to observed patterns of variability and extent). Further
analysis looked at differences in physical properties of the simu-
lations, using atmospheric sounding data and horizontal temper-
ature and moisture fields for the low level atmosphere.

Three twoweek case study simulations were completed for each
of the consideredWRF configurations, each representing a different
season and synoptic conditions for the geographical area of inter-
est. Subsequently two non-consecutive days of the heavier rainfall
days within the simulation period were selected for amore detailed
spatial analysis (discrepancies due to different use of physics
schemes being easier to identify for the heavier events). All eval-
uations used only the innermost simulation domain (D03), to
maximise the influence of the MP scheme on the rainfall estimates.

Different metrics and analyses were tested to see howwell they
captured desired characteristics in the simulated rainfall fields. A
metric is considered meaningful if it captures aspects that are
deemed relevant to the intended application (as mentioned above),
easily understood and directly relates to conclusions drawn when
visually comparing simulated and observed rainfall fields.

The timing of rainfall events was assessed comparing totals of
simulated and observed rainfall for the innermost domain D03.
Generally the MAE and RMSE gave similar ranking amongst the
ensemble members; though for case study 3 one day with very
large observed rainfall that was not well captured by either
ensemble member caused a difference in ranking when using the
different metrics. Perhaps for such small samples, the MAE is the
more robust measure as single events can otherwise have very
large impact on the metric. The quantileequantile plots provided a
good visual assessment of distributional similarities. A two sample
Kolmogorov Smirnov was applied as a goodness-of-fit test, but as
all tests gave very low p-values, the test did not provide useful
information to differentiate amongst simulations. Other metrics
were more informative. The FSS scores provided skill information
on positioning of heavy rainfall centres (90th percentile exceed-
ances), and the resolution for which skilful simulations are ach-
ieved. Whilst the FSS scores reduce the double penalty influence in
comparison to grid based evaluations, the metric is still a function
of position. As there is generally large similarity amongst ensemble
members in terms of positioning, the FSS scores typically indicated
similar skill across the ensemble. Greater separation in skill was
provided by the variography metric, combining the sill and range
parameters of the semi-variogram. Based on information contained
within the sample assessed (no grid cell-to-grid cell comparison)
the metric captured generic features of the spatial rainfall pattern.
Overall, the variography analysis proved useful in terms of sum-
marising spatial characteristics as seen in the mapped rainfall
patterns, always giving highest rank to the pattern visually iden-
tified to be most similar to that of observed. Whilst providing an
opportunity to look beyond the rainfall fields, the sounding profile
did not easily provide information that could qualify or quantify
skill around the desired criteria. The vertical profiles provided
verification of the simulated atmospheric structure at a single
location, but typically required further analysis of 2 dimensional
horizontal or vertical fields to better understand the context. The
main benefit from viewing the pressure level fields was a better
understanding of different characteristics of the WRF configura-
tions. The MYNN PBL simulations appeared somewhat cooler and
drier compared to the YSU simulations and simulations using the
WDM6 scheme stood out as having somewhat greater localised
rainfall intensities compared to those using the Thompson and
Milbrandt MP schemes. Without a formal assessment, however,
this paper is not in a position to attribute skill to these



Fig. 15. Rain Water Mixing Ratio (RWMR, kg/kg) at 900 mb pressure level for selected Day 5 (11 am EDT) and all ensemble members N1e6. The markers show the location of the
sounding station (black) and the nearest grid cell coordinate (grey); note that because locations are very close the markers overlap.
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characteristics; noting that the stronger mixing by YSU in com-
parison to MYNN was also noted by Coniglio et al. (2013) and in
general by Evans et al. (2012).

Drawing on information based on these metrics, ensemble
members performing somewhat better than others could be
identified for each of the studied rainfall days. More often than not,
the N1 ensemble member was identified as performing well,
particularly when using the variography metric. Hence, when
considering magnitude, timing, distribution and spatial skill, this
experiment points toward N1 having the type of qualities desired
for impact studies in the water resource sector.
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