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1. Introduction 
 
The Working Group on Numerical Experimentation (WGNE) began verifying quantitative precipitation 
forecasts (QPFs) in the mid 1990s. The purpose was to assess the ability of operational numerical 
weather prediction (NWP) models to accurately predict rainfall, which is a quantity of great interest and 
importance to the community. Many countries have national rain gauge networks that provide 
observations that can be used to verify the model QPFs. Since rainfall depends strongly on the 
atmospheric motion, moisture content, and physical processes, the quality of a model's rainfall 
prediction is often used as an indicator of overall model health. 
 
In 1995 the US National Centers for Environmental Prediction (NCEP) and the German Deutscher 
Wetterdienst (DWD) began verifying QPFs from a number of global and regional operational NWP 
models against data from their national rain gauge networks. The Australian Bureau of Meteorology 
Research Centre (BMRC) joined in 1997, followed by the UK Meteorological Office in 2000, Meteo-
France in 2001, and the Japan Meteorological Agency (JMA) in 2002. Many climatological regimes are 
represented, allowing QPFs to be evaluated for a large variety of weather types. 
 
The results of the WGNE QPF verification from 1997 through 2000 were summarized in a paper by 
Ebert et al. (2003). Focusing on a small number of verification measures, they assessed the relative 
accuracy of model forecasts of 24h rainfall accumulation in summer versus winter, mid-latitudes 
versus tropics, and light versus heavy rainfall. Quantitative results were provided for each category. 
However, Ebert et al. noted that it was not possible to directly compare the verification results for the 
United States, Germany, and Australia due to differences in verification methodology and rainfall 
observation time.  
 
In order to maximize the usefulness of the QPF verification/intercomparison to WGNE participants, it 
should be as similar as possible across all regions. It is probably not be feasible to change the rainfall 
observation times, but it is certainly desirable for participating centers to use a common verification 
methodology. The WWRP/WGNE Joint Working Group on Verification (JWGV, see Appendix 4) was 
asked in 2003 to provide recommendations on a standard verification methodology to be used for 
QPFs. 
 
The purpose of this document is to recommend a standard methodology for verification and 
intercomparison of QPFs from NWP models. Verification of deterministic QPFs (i.e., those 
giving a precise value for rain amount) is considered here; verification of probabilistic 
forecasts will be the subject of a future document . 
 
A number of recent reports have summarized the state of the art in precipitation verification and made 
specific recommendations for the practice of forecast verification. Wilson (2001) surveyed operational 
centers in Europe as to their QPF verification practices. He found that most centers used observations 
of 6h, 12h, and/or 24h rainfall accumulations from synoptic stations to verify model QPFs, and that a 
wide variety of verification scores were in use. He argues that observations that have been "upscaled" 
by averaging to the model's grid resolution give a fairer evaluation of model performance than direct 
comparison to gauge data, which ignores scale differences. 
 
In a report to WGNE, Bougeault (2002) reviewed "standard" and emerging verification techniques with 
an emphasis on their application to mesoscale model forecasts. He concluded with several 
recommendations  including (a) user-oriented and model-oriented verification may require different 
methodologies; (b) care is needed in handling the scale differences between model output and 
observations; (c) probabilistic methods may be more appropriate than the usual deterministic methods 
for verifying severe weather elements; (d) standard methodologies should be specified for weather 
elements from NWP, and (e) verification results should be accompanied by uncertainty measures. 
 
WMO's Standardised Verification System for Long-Range Forecasts (SVS for LRF) was developed to 
reduce confusion among users of long-range forecasts by adopting a coherent approach to verification 
(WMO, 2002). This system spells out the procedures to be used by operational centers for producing 
and exchanging a defined set of verification scores for forecasts of surface air temperature, 
precipitation, and sea surface temperature anomalies on time scales of monthly to two years. Both 
deterministic and probabilistic forecasts are to be verified on three levels: (1) large scale aggregated 
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overall measures of forecast performance in tropics, northern extra-tropics and southern extra-tropics, 
(2) verification at gridpoints (maps), and (3) gridpoint by gridpoint contingency tables for more 
extensive verification. Because long-range forecasts have many fewer realizations than weather 
forecasts, information on the uncertainty of the verification scores is also a requirement. 
 
ECMWF recently commissioned a review of existing verification practices for local weather forecasts in 
Member States and Co-operating States, to be reported in the annual "Green Book". The resulting 
report by Nurmi (2003) recommends a verification methodology for deterministic and probabilistic 
forecasts of weather elements, giving examples to illustrate the various verification methods. Nurmi 
specifies a set of minimum requirements (i.e., mandatory verification products) that all Member States 
should satisfy, as well as an optimum set that includes additional verification information. 
 
The recommendations made herein are essentially based on the above reports. We emphasize the 
need to produce a suite of verification measures to evaluate forecasts, rather than rely on some sort of 
summary score. Similar to Nurmi (2003), we rate verification measures as highly recommended (***), 
recommended (**), or worth a try (*).  
 
Section 2 presents the verification strategy. Section 3 discusses the reference data, while verification 
methods and scores are described in Section 4. Guidelines for reporting verification results are given 
in Section 5. Finally, the recommendations given in this document are summarized in Section 6. 
 
 
2. Verification strategy 
 
(a) Scope 
 
Some of the most important reasons to verify forecasts are (a) to monitor forecast quality over time, (b) 
to compare the quality of different forecast systems, and (c) to improve forecast quality through better 
understanding of forecast errors. Reasons (a) and (b) may be the most relevant to the WGNE QPF 
study, while individual NWP centers also have a strong interest in how to improve their forecasts (c). 
Different verification methods may be appropriate for each. For example, monitoring the quality of 
precipitation forecasts usually entails plotting the time series of a small number of well-known scores 
such as RMSE, frequency bias, and equitable threat score. To evaluate multiple aspects of a forecast 
system and to intercompare models a more detailed verification using a comprehensive set of 
verification scores is needed. To really understand the nature of forecast errors so that targeted 
improvements can be made to a model, diagnostic verification methods are often used. These may 
include distributions-oriented approaches such as scatter plots and histograms, and some of the 
newer methods such as scale separation and object-oriented methods (see Bougeault (2002) and 
JWGV (2004)). 
 
We recommend the use of a prescribed set of verification scores to evaluate and intercompare 
QPFs from NWP models (details given in Section 4). The use of additional scores and 
diagnostic methods to clarify the nature of model errors is highly desirable.  
 
(b) Spatial matching 
 
The primary interest of WGNE is anticipated to be model-oriented verification. By this, we mean the 
evaluation of model output on the space and time scales of the models. It addresses the question of 
whether the models are producing the best possible forecasts given their constraints on spatial and 
temporal resolution. For model-oriented verification Cherubini et al. (2002) showed that gridded, 
"upscaled", observations representing gridbox averaged rainfall are more appropriate than synoptic 
"point" observations because the spatial scales are better matched. The gridding of observations is 
discussed in Section 3. A fair intercomparison of QPFs from different models requires that they be 
mapped onto a common grid. This is because forecasts at coarse resolution tend to score better 
according to standard measures than those at high resolution. Acadia et al. (2003) found that a simple 
nearest-neighbor averaging method was less likely than bilinear interpolation to artificially smooth the 
precipitation field when downscaling coarser model output to a higher resolution grid.  
 
On the other hand, users of forecasts typically wish to know their accuracy for particular locations. This 
is especially relevant now that direct model output is becoming increasingly available to the public via 
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the internet. For this user-oriented verification it is appropriate to use the station observations to verify 
model output from the nearest gridpoint (or spatially interpolated if the model resolution is very coarse 
compared to the observations). It should be pointed out that the verification against a set of station 
observations, as is required in other WMO intercomparison programs (e.g. WMO, 2002), is the best 
way of ensuring truly comparable results between models. 
 
Both approaches have certain advantages and disadvantages with respect to the validity of the 
forecast verification. The use of gridded observations addresses the scale mismatch and also avoids 
some of the statistical bias that can occur when stations are distributed unevenly within a network. A 
disadvantage is that the gridded data are not "true" observations, i.e., they contain some error 
associated with smoothing and insufficient sampling. Station data are true observations, unadulterated 
by any post-processing, but they usually contain information on finer scales than can be reproduced 
by the model, and undersample the spatial distribution of precipitation. Members of the JWGV are 
divided as to which approach is preferable, but strongly agree that both give important information on 
forecast accuracy.1 
 
We recommend that verification be done both against 
(a) gridded observations (model-oriented verification) on a common 0.5° latitude/longitude grid  
(b) station observations (user-oriented verification) 
 
(c) Time scales 
 
The WGNE QPF verification/intercomparison has thus far used forecasts of 24h rainfall accumulation 
as the basic quantity to be verified. This is due to the large number of 24h rainfall observations 
available from national rain gauge networks. 24h observations are less prone to observational and 
representativeness errors than those for shorter periods. (Radar and satellite can provide rainfall 
information with high spatial and temporal resolution -- the use of these remotely sensed rain 
estimates as reference data will be discussed Section 3.)  
 
For the model intercomparison is it important to include only those days or time periods that are 
common to all models being compared. Alternatively, those models with patchy or non-existent output 
can be excluded from the verification. 
 
We recommend that WGNE continue to use 24h accumulation as the primary temporal scale for 
the rainfall verification.  Additional verification at higher temporal resolution (6h or 12h) is 
highly desirable but optional. Only those days common to all models should be included in the 
intercomparison. 
 
(d) Stratification of data 
 
Stratifying the samples into quasi-homogeneous subsets helps to tease out forecast behavior in 
particular regimes. For example, it is well known that forecast performance varies seasonally and 
regionally. Some pooling, or aggregation, of the data is necessary to get sample sizes large enough to 
provide robust statistics, but care must be taken to avoid masking variations in forecast performance 
when the data are not homogeneous. Some scores such as the correlation coefficient and the ETS 
can be artificially inflated if they are actually reflecting the ability of the model to distinguish seasonal 
or regional trends instead of the ability to forecast day to day or local weather. Pooling may bias the 
results toward the most commonly sampled regime (for example, regions with higher station density, 
or days with no severe weather). Care must be taken when computing aggregate verification scores. 
Some guidelines are given in Appendix 1. 
 
Many stratifications are possible. The most common stratifications reported in the literature appear to 
be by lead time, season, by geographical region, and by intensity of the observations.  
 

                                                 
1Tustison et al. (2001), advocate using an composite scale matching approach that combines 
interpolation and upscaling to reduce representativeness error. However, this approach has not been 
tested for scores other than the RMSE, and is much less transparent than verification using either 
gridded or raw observations. 
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We recommend that verification data and results be stratified by: 
(a) lead time (24h, 48h, etc.) 
(b) season (winter, spring, summer, autumn, as defined by the 3-month periods, DJF, MAM, 
JJF, SON) 
(c) region (tropics, northern extra-tropics, southern extra-tropics, where tropics are bounded 
by 20° latitude, and appropriate mesoscale subregions) 
(d) observed rainfall intensity threshold (1, 2, 5, 10, 20, 50 mm d-1)  
Use of other stratifications relevant to individual countries (altitude, coastal or inland, etc.) is 
strongly encouraged. Stratification of data and results by forecast rainfall intensity threshold 
(1, 2, 5, 10, 20, 50 mm d-1) is strongly encouraged. 
 
 (e) Reference forecasts 
 
To put the verification results into perspective and show the usefulness of the forecast system, 
"unskilled" forecasts such as persistence and climatology should be included in the comparison. 
Persistence refers to the most recently observed weather (i.e., the previous day's rainfall in the case of 
24h accumulation), while climatology refers to the expected weather (for example, the median of the 
climatological daily rainfall distribution for the given month)2. The verification results for unskilled 
forecasts hint at whether the weather forecast was "easy" or "difficult". Skill scores measure the 
relative improvement of the forecast compared to the unskilled forecast (see Section 4). Many of the 
commonly used verification scores give the skill with respect to random chance, which is an absolute 
and universal reference, but in reality random chance is not a commonly used forecast (despite what 
our critics say!). 
 
We recommend that the verification of persistence forecasts be reported along with the model 
verification. The verification of climatology forecasts is highly desirable. The use of model skill 
scores with respect to persistence, climatology, and random chance is highly desirable. 
 
(f) Uncertainty of results 
 
When aggregating and stratifying the data, the subsets should contain enough samples to give reliable 
verification results. This may not always be possible for rare events. In either case it is necessary to 
provide quantitative estimates of the uncertainty of the verification results themselves. This allows us 
to judge whether differences in model performance are likely to be real or just an artifact of sampling 
error. Confidence intervals contain more information about the uncertainty of a score than a simple 
significance test, and can be fairly easily computed using bootstrapping methods (see Appendix 2). 
The median and interquartile range (middle 50% of the sample distribution reported as the 25th and 
75th percentiles) give the "typical" values for the score. 
 
We recommend that all aggregate verification scores be accompanied by 95% confidence 
intervals.  Reporting of the median and interquartile range for each score is highly desirable. 
 
 
3. Reference data 
 
(a) Observations from rain gauges 
 
Most reference data for verifying model QPFs comes from national rain gauge networks. It is important 
that these data be as free as possible from error. We recognize that quality control of rainfall 
observations is extremely difficult due to their highly variable nature. Quality control measures should 
include screening for unphysical or unreasonable values using buddy checking and/or auxiliary infor-
mation.  
 
The verification should strive to use all available observations. Some countries have cooperative 
networks of rainfall observers who report to their meteorological centers well outside of real time. 

                                                 
2The long term climatology is preferred over the sample climatology because it is more stable. 
However, it requires information from outside the verification sample, which may not be easily 
available. Verification results for climatology forecasts should indicate whether they refer to the long 
term or the sample climatology. 
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Municipal and other agencies may also make rain measurements. These additional sources can 
greatly increase the number of the verification data as compared to datasets from synoptic sites only, 
particularly in high impact areas such as urban centers. A disadvantage of including non-synoptic data 
is that the verification cannot be done until well after the forecasts are made. 
 
Going from point observations to a gridded analysis is most easily done by averaging all of the 
observations within each grid box (Cherubini et al., 2002). This method matches observations with 
gridpoint values locally and independently. An alternate approach is to first use an objective analysis 
scheme such as kriging to analyze the data onto a fine grid, then upscale by averaging onto a coarser 
resolution grid. This approach has the advantage of regularizing the data distribution prior to 
averaging, but makes the assumption that the observations are spatially related on a restricted set of 
spatial scales. Experiments with several objective analysis schemes (including averaging) suggest that 
the accuracy of the analysis is determined primarily by the density of observations, rather than the 
chosen method of analysis (G. Weymouth, unpublished results).  
 
Efforts should be made to estimate the error associated with the gridded rainfall values (using 
withdrawal methods, for example). If the magnitude of the analysis errors approaches that of the 
forecast errors, those grid boxes should be withdrawn from the verification sample. The issue of how 
to best make use of information on reference data error in the QPF verification is a topic of current 
research.  
 
We recommend that quality-controlled point and gridded observations from rain gauge 
networks be the primary reference data for verifying model QPFs in WGNE. Research on the 
best use of reference data uncertainty in the verification process is strongly encouraged. 
 
(b) Remotely sensed rainfall estimates 
 
Reference data are also available from remotely sensed observations. Radar data provide rain 
estimates with very high spatial and temporal resolution (on the order of 1 km and 10 minutes). Many 
quality control procedures are needed to make radar data usable, and even then the rain estimates 
may not be accurate if fixed Z-R relationships are applied. Methods to correct local biases using 
coincident gauge observations have been developed, and high quality combined radar-gauge rainfall 
analyses are now available in the US, UK, and Japan, and are being developed in many other 
countries. They are especially useful for verifying mesoscale rain forecasts where more precise 
information on timing and location are desired. 
 
Rainfall estimates derived from satellite measurements are of greatest value where gauge and radar 
observations are not available, in remote regions and over the oceans. Because the measured 
passive infrared or microwave radiances are only indirectly related to rainfall, satellites rainfall 
estimates are less accurate than those from radar and gauges. Their use should be focused on giving 
the location and timing of rainfall, rather than the rainfall amount. 
 
We recommend that, where possible, combined radar-gauge rainfall analyses be used to verify 
model QPFs at high spatial and temporal resolution. Research on using satellite estimates for 
verifying the forecast rainfall location and timing in remote regions should be encouraged. 
 
 
4. Verification methods 
 
Verification begins with a matched set of forecasts and observations for identical locations and times, 
traditionally treated as independent samples. In reality there are often strong among-sample 
correlations within subsets of the data (coherent spatial patterns, for example), which some of the 
advanced diagnostic methods explicitly take into account (JWGV, 2004). 
 
Deterministic forecasts can be verified as categorical events or continuous variables, with different 
verification scores appropriate for each view. QPFs are usually viewed categorically according to 
whether or not the rain exceeds a given threshold. The continuous variable of interest is rain amount. 
Because rainfall amount is not normally distributed and can have very large values, many of the 
continuous verification scores (especially those involving squared errors) are sensitive to large errors. 
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For this reason categorical verification scores may give more meaningful information for precipitation 
verification.  
 
A large variety of verification scores are used operationally to verify QPFs (Wilson, 2001; Nurmi, 
2004). Details of these scores can be found in the textbooks of Wilks (1995) and Jolliffe and 
Stephenson (2003), or on the JWGV (2004) web site and references therein.  Most readers of this 
document will already be familiar with most or all of the scores given in this section. Here we give a 
very short definition of each score and indicate whether we consider it to be highly recommended (***), 
recommended (**) or worth a try (*). This distinction attempts to balance the need to evaluate the 
important aspects of the forecast while recognizing that most WGNE participants may not want to 
wade through a large array of scores. 
 
Note that once the forecast and observed data have been extracted and the code written to compute 
the highly recommended  scores, it is very little extra effort to compute the other scores.  
 
(a) Forecasts of rain meeting or exceeding specified thresholds 
 
For binary (yes/no) events, an event ("yes") is defined by rainfall greater than or equal to the specified 
threshold; otherwise it is a non-event ("no"). The joint distribution of observed and forecasts events 
and non-events is shown by the categorical contingency table. 
 

  Observed  

  yes no  

yes hits false alarms   forecast yes 

no misses correct rejections  forecast no 
Forecast 

 observed yes observed no  N = total 
 

The elements of the table, hits, false alarms, misses, and correct rejections, count the number of times 
each forecast and observed yes/no combination occurred in the verification dataset. A large number of 
verification scores are computed from these four values. Reporting the number of hits, false 
alarms, misses, and correct rejections for each of the rain thresholds specified in Section 2 is 
mandatory. 
 
The frequency bias (***) gives the ratio of the forecast rain frequency to the observed rain frequency. 
 

misseshits
alarmsfalsehitsBIAS

+
+=   

 
The proportion correct (PC) (***) gives the fraction of all forecasts that were correct.  
 

N
rejectionscorrecthitsPC  +=  

 
The probability of detection (POD) (***) measures the fraction of observed events that were correctly 
forecast.  
 

misseshits
hitsPOD
+

=  

 
The false alarm ratio (FAR) (***) gives the fraction of forecast events that were observed to be non-
events.  
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alarmsfalsehits
alarmsfalseFAR

 
 

+
=  

 
The probability of false detection (POFD) (**), also known as the false alarm rate, measures the 
fraction of observed non-events that were forecast to be events.  
 

alarmsfalserejectionscorrect
alarmsfalsePOFD

  
 

+
=  

 
The threat score (TS) (**) gives the fraction of all events forecast and/or observed that were correctly 
diagnosed.  
 

alarmsfalsemisseshits
hitsTS

 ++
=            

 
The equitable threat score (ETS) (***) measures the fraction of all events forecast and/or observed 
that were correctly diagnosed, accounting for the hits that would occur purely due to random chance.  
 

          
random

random

hitsalarmsfalsemisseshits
hitshitsETS

−++
−=

 
 

where 

( )yesforecastyesobserved
N

hitsrandom   x  1=  

 
The Hanssen and Kuipers score (HK) (***) measures the ability of the forecast system to separate the 
observed "yes" cases from the "no" cases. It also measures the maximum possible relative economic 
value attainable by the forecast system, based on a cost-loss model (Richardson, 2000).  
 

POFDPODHK −=  
 
The Heidke skill score (HSS) (**) measures the increase in proportion correct for the forecast system, 
relative to that of random chance.3  
 

noobservedyesforecastnoforecastyesobserved
)alarmsfalsemissesrejectionscorrecthits(HSS
  x    x  

  x   x  2
+

−=  

 
The odds ratio (OR) (**) gives the ratio of the odds of making a hit to the odds of making a false alarm, 
and takes prior probability into account.  
 

alarmsfalsexmisses
rejectionscorrectxhitsOR

   
   =  

 
The odds ratio skill score (ORSS) (**) is a transformation of the odds ratio to have the range [-1,+1].  
 

alarmsfalsexmissesrejectionscorrectxhits
alarmsfalsexmissesrejectionscorrectxhitsORSS
      
      

+
−=  

 
 
 (b) Forecasts of rain amount 
 

                                                 
3The HSS is related to the ETS according to HSS = 2 ETS / (1+ETS) (Schaefer, 1990) and therefore 
gives no new information. It is included here because it is familiar to many users. 
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Other statistics measure the quality of forecasts of a continuous variable such as rain amount. In the 
expressions to follow Fi indicates the forecast value for point or grid box i, Oi indicates the observed 
value, and N is the number of samples. 
 
As discussed previously, some continuous verification scores are sensitive to outliers. One strategy for 
lessening their impact is to normalize the rain amounts using a square root transformation 
(Stephenson et al., 1999). The verification quantities are computed from the square root of the 
forecast and observed rain amounts, then inverse transformed by squaring, if necessary, to return to 
the appropriate units. As the resulting errors are smaller than those computed from unnormalized data 
it is necessary to indicate whether the errors or scores apply to normalized or unnormalized data. 
 
The mean value (***) is useful for putting the forecast errors into perspective.  
 

∑∑
==

==
N

i
i

N

i
i F

N
FO

N
O

11

1          1  

 
Another descriptive statistic, the sample variance (s2) (**) describes the rainfall variability.  
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The sample standard deviation (s) (***) is equal to the square root of the sample variance, and 
provides a variability measure in the same units as the quantity being characterized.  
 

22           FFOO ssss ==  
 
The conditional median (***) gives the "typical" rain amount, and is more resistant to outliers than the 
mean. Since the most common rain amount will normally be zero, the conditional median should be 
drawn from the wet samples in the distribution. 
 
The interquartile range (IQR) (**) is equal to [25th percentile, 75th percentile] of the distribution of rain 
amounts, and reflects the sample variability. It is more resistant to outliers than the standard deviation. 
As with this conditional median, the IQR should be drawn from the wet samples. 
 
The mean error (ME) (***) measures the average difference between the forecast and observed 
values.  
 

OF)OF(
N

ME
N

i
ii −=−= ∑

=1

1  

 
The mean absolute error (MAE) (**) measures the average magnitude of the error.  

 

∑
=

−=
N

i
ii OF

N
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The mean square error (MSE) (**) measures the average squared error magnitude, and is often used 
in the construction of skill scores.  
 

∑
=

−=
N

i
ii )OF(

N
MSE

1

21  

 
The root mean square error (RMSE) (***) measures the average error magnitude but gives greater 
weight to the larger errors.  
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It is useful to decompose the RMSE into components representing differences in the mean and 
differences in the pattern or variability. 
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The root mean square factor (RMSF) (**) is the exponent of the root mean square error of the 
logarithm of the data, and gives a scale to the multiplicative error, i.e., F = O x/÷ RMSF (Golding, 
1998). Statistics are only accumulated where the forecast and observations both exceed 0.2 mm, or 
where either exceeds 1.0 mm; lower values are set to 0.1 mm.  
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The (product moment) correlation coefficient (r) (***) measures the degree of linear association 
between the forecast and observed values, independent of absolute or conditional bias. As this score 
is highly sensitive to large errors it benefits from the square root transformation of the rain amounts. 
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The (Spearman) rank correlation coefficient (rs) (**) measures the linear monotonic association 
between the forecast and observations, based on their ranks, RF and RO (i.e., the position of the 
values when arranged in ascending order). rs is more resistant to outliers than r. 
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Any of the accuracy measures can be used to construct a skill score that measures the fractional 
improvement of the forecast system over a reference forecast. The most frequently used scores are 
the MAE and the MSE (**). The reference estimate is persistence for forecasts of 24h or less, and 
climatology for longer forecasts.  
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referenceperfect
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LEPS (**) measures the error in probability space as opposed to measurement space, where CDFo() 
is the cumulative probability density function of the observations, determined from an appropriate 
climatology.  
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(c) Simple diagnostic methods 
 
Diagnostic methods give more in-depth information about the performance of a forecast system. Some 
methods examine the joint distribution of independent forecast and observed values, while others 
verify the spatial distribution or intensity distribution. Most diagnostic methods produce graphical 
results. 
 
Maps of observed and forecast rainfall show whether the overall spatial patterns are well represented 
by the forecast system. Maps of seasonal mean rainfall are highly recommended. Maps of the 
frequency of rainfall exceeding certain thresholds (for example, 1 mm d-1 and 10 mm d-1) are 
recommended. 
 
Time series of observed and forecast domain mean rainfall allow us to see how well the temporal 
patterns are simulated by the model. Time series of seasonal mean rainfall are highly 
recommended. Time series of mean rainfall for shorter time series are recommended. Time 
series of the seasonal frequency of rainfall exceeding certain thresholds (for example, 1 mm d-1 
and 10 mm d-1) are recommended. 
 
A scatter plot simply plots the forecast values against the observed values to show their correspon-
dence. The results can be plotted as individual points, or if there are a very large number, as a contour 
plot. Scatter plots of forecast versus observed rain are highly recommended. Scatter plots of 
forecast error versus observed rainfall are recommended. 
 
The distribution of forecast and observed rain amounts can be compared using histograms for discrete 
rainfall bins, quantile-quantile plots for discrete percentiles of the forecast and observed (wet) 
distributions, or by plotting the exceedance probability (1-CDF) as a function of rain amount. These 
plots are recommended. 
 
(d) Advanced diagnostic methods (*) 
 
Several advanced diagnostic methods have proven very useful in a research setting, and we 
encourage WGNE scientists to begin to experiment with them in research and operations. Some 
examples include multiscale spatial statistics (e.g., Harris et al., 2001), scale decomposition methods 
(e.g., Casati et al., 2004), object oriented methods (Ebert and McBride, 2000; Bullock et al., 2004), 
and spatial multi-event contingency tables (Atger, 2001). More information on these and other 
methods can be found on the JWGV (2004) web site.  
  
 
5. Reporting guidelines 
 
The QPF verification will be most useful to WGNE participants if the results are available in a timely 
fashion via the internet. A QPF report will also normally be made to WGNE on an annual basis. 
 
We recommend that the system description and a full selection of numerical and graphical 
verification results be accessible from a user-friendly web site that is updated on a regular 
basis. Password protection should be included to ensure confidentiality. 
 
(a) Information about verification system 
 
Information must be provided on the data and methodology used in the verification. This should 
include: 
 
Reference data: 

•  Description of reference data type(s) 
•  Locations of rain gauges and other reference data 
•  Domain for verification 
•  Reporting time(s) for reference data 
•  Description of quality control measures used 
•  Description of method used to put point observations onto a grid 
•  Information on observation and analysis errors, if available 
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•  Description of climatology reference forecasts 
 
Quantitative precipitation forecasts: 

•  Models included in the verification 
•  For each model: 

o Name and origin 
o Initialization time(s) 
o Spatial resolution of grid 
o Other information (spectral vs. gridpoint, vertical levels, cloud/precipitation physics, etc.) is 

useful but not required 
•  Method used to remap to the common grid 

 
Verification methods: 

•  List of scores, plots, and other type of verification products used in the system 
•  Method used to estimate confidence intervals on scores 

 
(b) Information about verification products 
 
Every verification product must be accompanied by information on exactly what is being verified: 

•  Score being computed / diagnostic technique being used 
•  Transformation applied to rain amounts, if any 
•  Model(s) being verified 
•  Country of verification 
•  Region within country (if applicable) 
•  Season(s) and year(s) 
•  Initialization time(s) 
•  Lead time(s) 
•  Accumulation period(s) 
•  Spatial scale(s) 
•  Rain thresholds(s) 

 
(c) Display of verification results 
 
Graphical products are generally easier to digest then tables full of numbers. There are many ways to 
"slice and dice" the results to show different aspects of the QPF evaluation. Some suggestions for 
graphical products are: 

•  Plot of scores for multiple models/seasons/rain thresholds as a function of lead time 
•  Plot of scores for multiple models/lead times/rain thresholds as a function of season (time series) 
•  Plot of scores for multiple models/seasons/lead times as a function of rain threshold 
•  POD versus FAR for multiple models as a function of rain threshold/lead times 
•  Bar chart of scores as a function of model, lead time, season, rain threshold, etc. 
•  Box and whiskers plot of daily scores as a function of model, lead time, season, rain threshold, etc. 
•  Taylor diagram (Taylor, 2001) including multiple models, lead times, seasons, thresholds, etc. 

Some examples of graphical verification products are shown in Appendix 3. 
 
In addition to the graphical products, the numerical verification results should be made available to 
other WGNE scientists. All scores should be tabulated in downloadable files for ease of use. 
 
Confidence intervals may be shown as error bars on the diagrams. At the very least they should be 
reported in the tables. 
 
 
6. Summary of recommendations 
 
The mandatory set of verification scores should be used to evaluate and intercompare QPFs from 
NWP models (details given in Section 4). The additional use of optional measures and diagnostic 
methods to clarify the nature of model errors is highly desirable.  
 
The verification should be done both against 
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(a) gridded observations (model-oriented verification) on a common 0.5° latitude/longitude grid  
(b) station observations (user-oriented verification) 
 
24h accumulation should continue to be used as the primary temporal scale for the rainfall verification.  
Additional verification at higher temporal resolution (6h or 12h) is highly desirable. Only those days 
common to all models should be included in the intercomparison. 
 
The verification data and results should be stratified by: 
(a) lead time (24h, 48h, etc.) 
(b) season (winter, spring, summer, autumn, as defined by 3-month periods, DJF, MAM, JJF, SON) 
(c) region (tropics, northern extra-tropics, southern extra-tropics, where tropics are bounded by 20° 

latitude, and appropriate mesoscale subregions) 
(d) observed rainfall intensity threshold (1, 2, 5, 10, 20, 50 mm d-1)  
Use of other stratifications relevant to individual countries (altitude, coastal or inland, etc.) is strongly 
encouraged. Stratification of data and results by forecast rainfall intensity threshold (1, 2, 5, 10, 20, 50 
mm d-1) is strongly encouraged. 
 
The verification of persistence forecasts should be reported along with the model verification. The 
verification of climatology forecasts is highly desirable. The use of model skill scores with respect to 
persistence, climatology, and random chance is highly desirable. 
 
All aggregate verification scores should be accompanied by 95% confidence intervals. Reporting of 
the median and interquartile range for each score is highly desirable. 
 
Quality-controlled point and gridded observations from rain gauge networks should be the primary 
reference data for verifying model QPFs in WGNE. Research on the best use of reference data 
uncertainty in the verification process is strongly encouraged. 
 
Where possible, combined radar-gauge rainfall analyses should be used to verify model QPFs at high 
spatial and temporal resolution. Research on using satellite estimates for verifying the forecast rainfall 
location and timing in remote regions should be encouraged. 
 
The verification results should include the following information: 
 
Model:  (ex: ECMWF)    Initialization time:  (ex: 00 UTC) 
Verification Country:  (ex: Australia)  Forecast projection:  (ex: 48h) 
Region:  (ex: Tropics)    Accumulation period:  (ex: 24h) 
Season and year:  (ex: JJA 2003)  Spatial scale:  (ex: 1° grid) 
 
Forecast Highly recommended Recommended 

Rain occurrence ≥ specific 
thresholds: 1, 2, 5, 10, 20, 
50 mm d-1  

Elements of contingency table: 
hits, misses, false alarms, correct 
rejections 
 
PC, BIAS, POD, FAR, ETS, HK 
 
(including 95% confidence 
intervals on scores) 

POFD, TS, HSS, OR, ORSS 
 
(including 95% confidence intervals 
on scores) 
 
maps, time series 

Rain amount 
FO ssFO   ,  ,  ,  

 
median O, median F 
 
ME, RMSE, r 
 
(including 95% confidence 
intervals on scores) 
 
maps, time series, scatter plots 

2
F

2
O  ,ss  

 
IQRO, IQRF 
 
MAE, MSE, RMSF, rs, MAE_SS, 
MSE_SS, LEPS 
 
(including 95% confidence intervals 
on scores) 
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error scatter plots, histograms, 
quantile-quantile plots, exceedance 
probability 

 
 
The system description and a full selection of numerical and graphical verification results should be 
accessible from a user-friendly web site that is updated on a regular basis. Password protection 
should be included to ensure confidentiality. 
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Appendix 1. Guidelines for computing aggregate statistics 
 
Real-time verification systems often produce daily verification statistics from the spatial comparisons of 
forecasts and observations, and store these statistics in files. To get aggregate statistics for a period of 
many days it is tempting to simply average all of the daily verification statistics. Note that in general 
this does not give the same statistics as those that would be obtained by pooling the samples over 
many days. For the linear scores such as mean error, the same result is obtained, but for non-linear 
scores (for example, anything involving a ratio) the results can be quite different.  
 
For example, imagine a 30-day time series of the frequency bias score, and suppose one day had an 
extremely high bias of 10 because the forecast predicted an area with rain but almost none was 
observed. If the forecast rain area was 20% every day and this forecast was exactly correct on all of 
the other 29 days (i.e., bias=1), the daily mean frequency bias would be 1.30, while the frequency bias 
computed by pooling all of the days is only 1.03. These two values would lead to quite different 
conclusions regarding the quality of the forecast. 
 
The verification statistics for pooled samples are preferable to averaged statistics because they are 
more robust. In most cases they can be computed from the daily statistics if care is taken. The 
guidelines below describe how to correctly use the daily statistics to obtain aggregate multi-day 
statistics. An assumption is made that each day contains the same number of samples, N (number of 
gridpoints or stations). 
 
For pooled categorical scores computed from the 2x2 contingency table (Section 4a): 
 
First create an aggregate contingency table of hits, misses, false alarms, and correction rejections by 
summing their daily values, then compute the categorical scores as usual. 
 
For linear scores (mean, mean error, MAE, MSE, LEPS): 
 
The average of the daily statistics is the same as the statistics computed from the pooled values. 
 
For non-linear scores: 
 
The key is to transform the score into one for which it is valid to average the daily values. The mean 
value is then transformed back into the original form of the score. 

RMSE:  First square the daily values to obtain the MSE. Average the squared values, then 
take the square root of the mean value. 

RMSF: Take the logarithm of the daily values and square the result, then average these 
values. Transform back to RMSF by taking the square root and then the 
exponential. 

s2: The variance can also be expressed as 2

1

22

11
1 F

N
NF

N
s

N

i
iF −

−
−

= ∑
=

. To compute the 

pooled variance from the daily variances, subtract the second term (computed from 
the daily F ) from 2

Fs  to get the daily value of the first term. Average the daily 
values of the first term, and use the average of the daily F  values to compute the 
second term. Recombine to get the pooled variance. 

s:  Square the daily values of s to get daily variances. Compute the pooled variance as above, 
then take the square root to get the pooled standard deviation. 

r:  Multiply the daily correlations by the daily sF x sO to get the covariance, sFO.  The covar-

iance can be expressed as OF
N

NOF
N

s
N

i
iiFO 11

1
1 −

−
−
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=

. Follow the steps 

given for s2 above to get a pooled covariance. Divide by the product of the pooled 
standard deviations to get the pooled correlation. 

MAE_SS, MSE_SS: Use the pooled values of MAE or MSE to compute the skill scores. 
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Appendix 2. Confidence intervals for verification scores 
 
Any verification score must be regarded as a sample estimate of the "true" value for an infinitely large 
verification dataset. There is therefore some uncertainty associated with the score's value, especially 
when the sample size is small or the data are not independent. It is a good idea to estimate some 
confidence intervals (CIs) to set some bounds on the expected value of the verification score. This 
also helps to assess whether differences between competing forecast systems are real. 
 
Kane and Brown (2000) give a nice discussion of several methods for deriving CIs for verification 
measures. Mathematical formulae are available for computing CIs for distributions which are binomial 
or normal, assumptions that are reasonable for scores that represent proportions (PC, POD, FAR, 
TS). In general, most verification scores cannot be expected to satisfy these assumptions. Moreover, 
the verification samples are often non-independent in space and/or time. A non-parametric method 
such as the bootstrap method is ideally suited for handling these data because it does not require 
assumptions about distributions or independence. 
 
The non-parametric bootstrap is quite simple to do: 
 
1. Generate a bootstrap sample by randomly drawing N forecast/observation pairs from the full set of 
N samples, with replacement (i.e., pick a sample, put it back, N times). 
 
2. Compute the verification statistic for that bootstrap sample. 
 
3. Repeat steps 1 and 2 a large number of times, say 1000, to generate 1000 estimates for that 
verification statistic. 
 
4. Order the estimates from smallest to largest. The (1-α) confidence interval is easily obtained by 
finding the values for which the fraction α /2 of estimates are lower and higher, respectively. 
 
When comparing the scores for two or more forecasts one can use the degree of overlap between 
their confidence intervals to judge whether the differences between the forecasts are likely to be 
significant. A more precise method is to calculate confidence intervals for the mean difference 
between the scores. If the (1-α) confidence interval does not include 0, then the performance of the 
forecasts can be considered significantly different. 
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Appendix 3. Examples of graphical verification products 
 
1. Pooled value of score for multiple models as a function of forecast lead time 

 
 
2. Pooled value of score for multiple models as a function of rain threshold 

 
 
3. Pooled value of score for multiple seasons as a function of model 
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4. POD vs FAR for multiple models as a function of rain threshold 

 
 
5. Box plot of daily values of score for multiple models as a function of lead time  

 
 
6. Maps of forecast and observed mean seasonal rainfall 
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7. Maps of forecast and observed frequency of rain exceeding 10 mm d-1. 

 
 
 
8. Seasonal time series of forecast and observed mean rainfall 

 
9. Scatte
normaliz

 

O
BS  MODEL-1  MODEL-2  MODEL-3
 

r plot of forecast versus observed rainfall. The dashed line shows the best fit to the data when 
ed using a square root transformation. 
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10. Quantile-quantile plot of forecast versus observed rainfall. Quantiles are given in 5% increments. 

 
 
11. Exceedance probability for forecast and observed rainfall 

 
12. Non-dimensional Taylor diagram 
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13. Box plot of daily values of score for multiple models as a function of rain range for forecast or 
observed rain. 
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