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Traditional point-to-point verification is more and more superseded by 
situation-based verification such as an object-oriented mode. One 
main reason is that difficulties are encountered while interpreting the 
outcome of a conventional contingency table based on amplitude 
thresholds. Firstly, a predetermined amplitude threshold splits the 
distributions under comparison at an unknown location. In an extreme 
case, single entries of the contingency table can become zero. Then 
some scores cannot be computed (due to a division by zero) and 
statements about model behavior are hard to make. Secondly, the 
distributions under comparison usually differ considerably with 
respect to their range of values. Customary scores do not fulfill the 
requirements for equitability (Gandin and Murphy, 1992) and fail to 
be firm with respect to hedging (Stephenson, 2000). Thirdly, the joint 
distribution usually comprises multiple degrees of freedom. In the 
case of a 2x2 amplitude-based contingency table, three linearly 
independent scores are needed to display all verification aspects 
(Stephenson, 2000). It is possible to draw complementary information 
from the considered datasets, if concurrent scores are applied 
simultaneously. But it remains unclear, how to attribute individual 
verification aspects to measures which are not totally independent 
from each other. Fourthly, it is not meaningful to integrate amplitude-
based scores over a range of intensities. Averages over multiple 
thresholds are difficult to interpret, because it is not obvious how 
many data points fall within individual ranges of thresholds.  
 
It is feasible to counteract the addressed drawbacks of categorical 
statistics while holding the framework of a contingency table. To this 
end, frequency thresholds, i.e. quantiles, can be used instead of 
amplitude thresholds to define the cell counts.  
Two additional interrelations are automatically included into the 
conceptual formulation of a 2x2 problem: 

false alarms = misses        misses + correct negatives = pN 
Note that p denotes the quantile probability (0 < p < 1) and N stands 
for the sample size. Due to the first equation, the contingency table 
benefits from a calibration and is not influenced by the bias any more. 
The problem of hedging is eluded, because it is no longer possible to 
change the number of forecasted events without adjusting the number 
of observed events. Due to the second equation, the base rate 1–p 



(note that the definition here is not p as in other literature) is fixed a 
priori and determines the rarity of events. The single remaining degree 
of freedom uniquely describes the joint distribution in the balanced 
setting. Thus, it is now possible to describe the potential skill or the 
potential accuracy of a calibrated forecast by means of a single score.  
Depending on the quantile probability, the four entries of the 
contingency table only vary within a limited span (Fig. 1). If the 
quantile probability is below 0.5, there are always some hits by 
definition. If the quantile probability is above 0.5, there are always 
some correct negatives by definition. The misses and false alarms are 
consistently limited at the top. They are restricted either by the 
number of non-events (p < 0.5) or by the number of events (p > 0.5). 
A random forecast imposes strongly varying frequencies for all entries 
in the contingency table. A score is preferably independent from all 
variations caused by the base rate.         

 
Figure 1: Possible entries (gray shaded) and random expectation values 
(thick black lines) of the four entries in the 2x2 contingency table: a) hits, b) 
misses or false alarms, c) correct negatives. The x-axis displays the range of 
quantile probabilities and the y-axis shows the number of data points. Lightly 
shaded areas represent values without skill and darkly shaded areas 
represent values with skill. 

 
The Peirce Skill Score (PSS, equivalent to the True Skill Statistics and 
the Hanssen-Kuipers Discriminant) is able to measure skill without 
being perturbed by the base rate (e.g. Woodcock, 1976, Mason, 1989). 
Thus, the PSS is ideally suited to measure the joint distribution, i.e. to 
display the potential forecast accuracy on its own. Owing to the 
definition of a quantile, the computation of the PSS simplifies to: 

PSS = 1 – misses/missesrand        missesrand = (p – p2)N 
To complement the verification, the bias is represented by the absolute 
or relative quantile difference: 

QD = qmod – qobs        QD’ = 2QD/(qobs + qmod) 
Note that qobs and qmod denote the observed and modeled (forecasted) 
quantile values, respectively. QD’ is computed according to the 
amplitude component in the SAL measure (Wernli et al., 2008). The 
value therefore varies between -2 and +2. The QD and the debiased 
PSS split the total error into the independent components of bias and 
potential accuracy. Together, they provide a complete verification set 



with the ability to assess the whole range of intensities along the 
distributions under comparison.  
 
The conventional PSS (with amplitude thresholds) cannot distinguish 
between an amplitude error and a shift error. Only the quantile-based 
contingency table provides the opportunity to distinguish between the 
two types of errors. The new concept can be exemplified by means of 
a simple forecast example. Consider a constructed forecast problem 
with daily rainfall amounts for 8 days (Fig. 2). The observed 
distribution (Obs.) is temporally symmetric and peaks on day 4 and 5. 
A first forecaster (Fcst 1) is able to estimate the right amounts, but 
predicts the rainfall one day too late, meaning that his forecast exhibits 
a shift error. A second forecaster (Fcst 2) is able to estimate the right 
timing, but overpredicts the rainfall by 2 mm/day, meaning that his 
forecast exhibits a bias. We want to compare both forecasts by means 
of the PSS now. The conventional PSS is applied with an amplitude 
threshold (AT) of 3 mm/day. The result is an equal scoring of PSS = 
0.5 for both forecasters. Thus, both forecasts show the same 
performance, but we cannot assess the error type. The debiased PSS is 
applied with a frequency threshold (FT) of p = 50%. The result is still 
PSS = 0.5 for the first forecaster, but it is raised to PSS = 1 for the 
second forecaster. Since the bias is disregarded in the debiased PSS, 
the second forecast is rated optimal. To account for the amplitude 
error, the quantile difference is evaluated. It constitutes QD = 0 mm, 
i.e. QD’ = 0, for the first forecast. Likewise, it constitutes QD = 2 mm, 
i.e. QD’ = 0.5, for the second forecast. It is now possible to clearly 
distinguish between a shift error and a bias. Thus, room for additional 
insights is provided in the proposed verification concept.  

 
Figure 2: Constructed example of forecasting rainfall amounts for 8 days: 
Observations (left), first forecast (middle), second forecast (right). The first 
forecast exhibits a pure shift error of 1 day. The second forecast exhibits a 
pure bias with an overestimation of 2 mm/day.  The selected amplitude 
threshold (AT) constitutes 3 mm/day. The selected frequency threshold (FT) 
corresponds to the 50% quantile. 

 
To aggregate the scores over intensities, weighted averages can be 
computed over quantiles. Thereby, QD’ is integrated with its absolute 
value, because individual quantiles with an over- and underestimation 



can cancel each other out otherwise. The weights w (p) correspond to 
the arithmetic and the geometric mean for the QD’ and the debiased 
PSS, respectively: 

 
 
A convenient advantage of using quantiles is a stabilization of the 
sample uncertainty for rare events. Bootstrap confidence intervals for 
the debiased PSS reveal that the uncertainty usually only slightly 
increases while moving towards extreme quantiles. Quantile 
probabilities inherently are not affected by amplitude uncertainties, 
but their transformation to quantile values, i.e. corresponding 
amplitudes, suffers from ambiguities. We can achieve a high 
confidence for the PSS value for a certain quantile, but still hold a low 
confidence for the quantile estimation. However, since arbitrary 
amplitudes are not related to the sample distribution, it is sometimes 
useful only to consider quantiles, corresponding for example to return 
periods of extreme rainfall events. 
 
An elaborate description of the methodology as well as an application 
to daily rainfall forecasts of the COSMO model1 over Switzerland can 
be found in Jenkner et al. (2008). 
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