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c© by Gebrüder Borntraeger 2008

Quantile-based short-range QPF evaluation over Switzerland

JOHANNES JENKNER1∗, CHRISTOPH FREI2 and CORNELIA SCHWIERZ3

1Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
2Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland
3Institute for Climate and Atmospheric Science, University of Leeds, UK

(Manuscript received March 10, 2008; in revised form October 6, 2008; accepted October 6, 2008)

Abstract
Quantitative precipitation forecasts (QPFs) are often verified using categorical statistics. The traditionally
used 2×2 contingency table is modified here by applying sample quantiles instead of fixed amplitude thresh-
olds. This calibration is based on the underlying precipitation distribution and has beneficial implications
for categorical statistics. The quantile difference and the debiased Peirce skill score split the total error into
the complementary components of bias and debiased pixel overlap. It is shown that they provide a complete
verification set with the ability to assess the full range of rainfall intensities. The technique enables the po-
tential skill in a calibrated forecast to be estimated without spurious influences from the marginal totals and
the problem of hedging is therefore avoided. To exemplify the feasibility of quantile-based contingencies, the
method is applied to 6.5 years of operational rainfall forecasts from the Swiss Federal Office of Meteorology
and Climatology (MeteoSwiss). Daily accumulations of the COSMO model at 7 km grid size are compared
to a high-quality gridded observational record of spatially interpolated rain gauge data. The quantile-based
scores are applied to single grid points and to predefined regions. A high-resolution error climatology is then
built up and reviewed in terms of typical error characteristics in the model. The seasonal QPF performance
exhibits the most severe overestimation over the Northern Alps during winter, indicative of the impact of the
model ice phase. The QPF performance related to model updates, such as the introduction of the prognostic
precipitation scheme, is also evaluated. It is demonstrated that the potential skill continuously increases for
subsequent versions of the COSMO model. Over the entire time period, a strong gradient of the debiased
Peirce skill score is evident over the Alps, meaning that the potential skill is much higher on the Alpine south
side than on the north side.

Zusammenfassung
Zur Verifikation von Quantitativen Niederschlagsvorhersagen (QNV) werden häufig kategorische Fehlermaße
verwendet. Die traditionellerweise benutzte 2×2 Kontingenztafel wird hier durch die Anwendung von Quan-
tilen anstelle von festen Amplitudenschwellwerten modifiziert. Diese Kalibrierung orientiert sich an der zu-
grundeliegenden Niederschlagsverteilung und beeinflusst kategorische Fehlermaße vorteilhaft. Die Quantils-
differenz und der angepasste Peirce Skill Score teilen den Gesamtfehler in die sich gegenseitig ergänzen-
den Komponenten des Bias und der angepassten Gitterpunktsüberlappung auf. Es wird gezeigt, dass sie eine
vollständige Verifikationsbasis bilden, die den gesamten Bereich an Niederschlagsintensitäten abdecken kann.
Die Methodik erlaubt es, den potenziellen Skill in einer kalibrierten Vorhersage ohne störende Einflüsse der
Randverteilungen zu bestimmen und umgeht dadurch die Problematik des “Hedging”. Um die Einsetzbarkeit
von quantilsbasierten Fehlermaßen zu demonstrieren, wird die Methode auf 6.5 Jahre an Niederschlags-
vorhersagen vom Schweizer Bundesamt für Meteorologie und Klimatologie (MeteoSchweiz) angewendet.
Tägliche Summen aus dem COSMO-Modell mit einer horizontalen Auflösung von 7 km werden mit einem
hochwertigen gegitterten Beobachtungsdatensatz verglichen. Die quantilsbasierten Fehlermaße werden auf
einzelne Gitterpunkte und auf festgelegte Gebiete angewendet. Eine hochaufgelöste Fehlerklimatologie wird
erstellt und im Hinblick auf typische Fehlercharakteristika im Modell untersucht. Die jahreszeitlich gemit-
telten QNV-Fehler zeigen die größte Überschätzung über den nördlichen Alpen im Winter, was auf den Ein-
fluss des Eisschemas hinweist. Die QNV-Fehler während verschiedener Phasen der operationellen COSMO-
Modellentwicklung, wie z.B. der Einführung des prognostischen Niederschlagsschemas, werden ebenfalls
quantifiziert. Dabei wird gezeigt, dass sich der potenzielle Skill kontinuierlich verbessert hat. Über die ganze
Periode fällt ein großer Fehlergradient des angepassten Peirce Skill Scores auf, was bedeutet, dass der poten-
zielle Skill auf der Alpensüdseite viel höher ist als auf der Nordseite.

1 Introduction

Precipitation forecasts are of societal, economic, and
social interest and decision making often relies on ac-
curate rainfall predictions. Hence, there is a great deal
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of research activity to improve Quantitative Precipita-
tion Forecasting (QPF) and weather centers continu-
ously evaluate their operational high-resolution limited-
area models (LAM) to trace error sources.

QPF is particularly challenging over complex ter-
rain. The Mesoscale Alpine Programme (MAP, BENOIT
et al., 2002) provided many new insights into the dynam-
ics and challenges of predicting orographic precipitation
(e.g. RICHARD et al., 2007; ROTUNNO and HOUZE,
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2007, and references therein). A variety of factors de-
termine the formation of heavy precipitation and in-
fluence QPF quality in Numerical Weather Prediction
(NWP) models. They include: (a) the accuracy of the
synoptic-scale upper-level triggers of precipitation and
their correct mesoscale interaction with steep orography
(e.g. FEHLMANN and QUADRI, 2000; MARTIUS et al.,
2006), (b) the representation of the orography (ACCA-
DIA et al., 2005) and model resolution (BUZZI et al.,
2004; ZÄNGL, 2007), (c) the low-level moisture field
(MARTIUS et al., 2006; MAHONEY and LACKMANN,
2007) and the boundary layer structure (ROTUNNO and
HOUZE, 2007), (d) the enhancement of precipitation by
microphysical processes (e.g. ZENG et al., 2001; PU-
JOL et al., 2005) and turbulence (HOUZE and MEDINA,
2005).

Also the formulation and numerics of the NWP sys-
tem itself can influence QPF. KAUFMANN et al. (2003)
evaluated the former hydrostatic LAM of the COSMO
consortium1 and found that the model error is exceed-
ingly sensitive to the activation of convection in parame-
terized precipitation and the sloping topography in re-
solved precipitation. KÅLLBERG and MONTANI (2006)
compared a non-hydrostatic versus a hydrostatic model
which also differed in the data-assimilation schemes and
numerics. Above all, they found more intense precipita-
tion extremes in the non-hydrostatic formulation due to
dissimilarities of the convection schemes. The prognos-
tic treatment of precipitation markedly improved the wet
(dry) bias on the windward (downwind) side of orogra-
phy which is typically noted for QPF over complex ter-
rain (e.g. ELEMENTI et al., 2005).

From a more generic point of view, HOHENEGGER
and SCHÄR (2007) investigated the dynamics of error
growth. They used a range of different initial perturba-
tion procedures of a high-resolution ensemble and found
a rapid radiation of the initial uncertainties throughout
the computational domain and a further amplification
over moist convectively unstable regions (compare also
HOHENEGGER et al., 2006).

It is clear from the above that the problem of identi-
fying sources of QPF errors is highly complex. An ad-
ditional drawback arises from the fact that most of our
knowledge today is based on case studies or on relatively
short-term periods (up to 1-2 years) of investigation.
However, QPF quality tends to be more case-dependent
than model-dependent (RICHARD et al., 2003). A con-
sistent quantification and rigorous investigation of QPF
over a longer-term period is highly desirable to trace
QPF errors and identify the main model shortcomings.
In view of this, novel verification techniques for pre-
cipitation forecasts are currently being developed. Most
notably, spatial approaches are able to consider differ-
ent areal error aspects. An example is the intensity-scale
technique (CASATI et al., 2004; MITTERMAIER, 2006)
which diagnoses skill as a function of “precipitation rate

1web site: www.cosmo-model.org

Table 1: 2x2 Contingency table with hits H, misses M, false alarms
F and correct negatives Z.

observed yes observed no
predicted yes H F
predicted no M Z

intensity” (CASATI et al., 2004) and spatial scale of the
error. Another example is the object-based quality mea-
sure SAL (WERNLI et al., 2008) which assesses the co-
herence in structure, amplitude and location of precipita-
tion objects. As a matter of fact, the findings of these and
comparable methods are only representative for a prede-
fined verification domain. Hence the attribution of indi-
vidual verification aspects to specific locations or sites
is hardly possible. Pertinent information is therefore lost
over mountainous terrain where the spatial variability
of atmospheric parameters usually is large (FREI and
SCHÄR, 1998; SCHMIDLI et al., 2002).

In this context, the traditional grid-point verifica-
tion still provides an expedient alternative. As explained
by MURPHY and WINKLER (1987) or MCBRIDE and
EBERT (1999), categorical statistics are traditionally
used for dichotomous verification purposes such as
the validation of precipitation. After the selection of a
threshold value it is tested whether model and observa-
tions exceed the limit. Most standard methods rest upon
a conventional 2x2 contingency table2 (Tab. 1) consist-
ing of the number of hits H, misses M, false alarms F
and correct negatives Z. From these four entries, sev-
eral error measures (or scores) such as frequency bias,
probability of detection (POD), false alarm ratio, prob-
ability of false detection (POFD), threat score, equi-
table threat score, Peirce skill score (PSS=POD-POFD,
PEIRCE, 1884), odds ratio skill score and others can be
derived (e.g. MASON, 2003).

A desired property of categorical measures is equi-
tability as defined by GANDIN and MURPHY (1992).
The definition of equitable measures implies that ran-
dom and constant forecasts are treated identically. A
necessary prerequisite is that the scoring rule extracts
the joint distribution, defined by forecasts and obser-
vations together, and disregards the marginal distribu-
tions, defined separately by forecasts and observations.
In other words, equitable scores display unvarying ex-
pected values irrespective of varying marginal totals. In
this sense, only equitable scores guarantee a fair com-
parison of samples with different characteristics. A sim-
ple example for a non-equitable score is the POD which
exhibits higher values for random forecasts of frequent
events than for those of rare events. Non-equitable mea-
sures can upgrade forecasts which are not consistent i.e.
which do not correspond to the forecaster’s judgment
(see MURPHY, 1993, for explanation). Consequently,
both model developers and operational forecasters are
tempted by hedging (MURPHY and EPSTEIN, 1967) and

2extensions to multiple categories are straightforward
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Figure 1: Subdivision of Switzerland into six orographically distinct
areas: Jura, Middleland, Northern Alps, Valais, Ticino, Grisons.
Square dividing lines indicate the margins of the COSMO grid
points. Highest mountain formations are marked with an X.

falsely adjust the number of forecasted events to achieve
a better scoring.

So far, opinions about equitability substantially di-
verge in the literature. As proven by GANDIN and
MURPHY (1992), the PSS (which is equivalent to the
Hanssen-Kuipers discriminant, HANSSEN and KUIPERS,
1965), constitutes the unique solution (i.e. the only one
possible) which satisfies the strict conditions for equi-
tability, namely an invariable rating of both random and
constant forecasts. In fact, the uniqueness of the PSS
still applies to conditions with an unequal penalty for
misses and false alarms (MANZATO, 2005). However,
the uniqueness is lost, if the conditions for equitability
are slightly relaxed, i.e. constant forecasts are allowed
to score unlike random forecasts (MARZBAN and LAK-
SHMANAN, 1999). In theory, scores can be equitable or
nearly equitable (in the sense that random/constant fore-
casts do not vary or only slightly vary) and provide a
verification free from any computational complications.
In practice, the usefulness of measures essentially varies
in different constructed and real cases (e.g. MARZBAN,
1998; HAMILL and JURAS, 2006). On the one hand, it
is not feasible to compare forecasts for different event
frequencies or base rates (e.g. MASON, 2003). The so-
called base-rate error is usually neglected, but it low-
ers the displayed performance of finite-accuracy fore-
casts for rare events (MATTHEWS, 1996). Most scores
are deeply affected by this dilemma, but WOODCOCK
(1976) and MASON (1989) find the PSS to be un-
affected. Indeed, THORNES and STEPHENSON (2001)
only grant the odds ratio skill score and the PSS to cope
with small base rates. On the other hand, common scores
depend on the bias which HILLIKER (2004) exemplifies
by means of the threat score. The PSS approaches the
POD in rare-event situations and then is spuriously al-
tered by the bias. Consequently, the PSS exhibits a dis-
tinct optimal threshold probability which maximizes its
expected value (MASON, 2003) and the PSS is prone to
hedging.

MESINGER (2008) points out that the impact of the
bias customarily is estimated in a subjective manner,
because objective approaches are still missing. He in-
troduces a method to debias the threat score and like-
wise the equitable threat score. To this end, he converts
the standard contingency table to a setting with a unit
bias and recommends it to use for an objective verifi-
cation of the placing of precipitation systems. Although
Mesinger’s approach alleviates some of the basic prob-
lems of verifying biased distributions, a drawback re-
mains, in that assumptions need to be made which can-
not be derived from the underlying distributions alone.

The purpose of our study is twofold. At first, we intro-
duce a refined grid-point verification measure which ful-
fills the requirements of equitability without making any
additional assumptions. Thereby, we make use of the de-
finition of a quantile which is equivalent to the terms
of percentile and fractile (WILKS, 2006). Note that the
90 % quantile for example is exceeded every tenth time,
meaning that it cuts off the tenth most extreme part from
the rest of a dataset. Then, we apply our method to quan-
tify bias and potential skill in a long-term climatology of
operational high-resolution precipitation forecasts over
complex terrain. The resulting error climatology allows
for an extensive model diagnosis to help to identify pos-
sible error sources. The dataset is long enough to inves-
tigate data subsets, such as seasonal error variations and
chronological error evolutions caused by different oper-
ational model versions.

The structure of the paper is the following: Some
background information about the observational analy-
sis, the verified COSMO model and the geographic set-
ting is provided in Section 2. The refined verification
methodology is derived and discussed in Section 3. Then
we turn to present the verification results. Section 4 pin-
points seasonal error variations and Section 5 highlights
characteristics of different model versions. Finally re-
sults are discussed and synthesized in Sections 6 and
7. The mathematical details of the verification method-
ology and related derivations and discussions are pre-
sented in the appendices.

2 Verification data, model and domain

2.1 Observational analysis

The reference dataset used for the model evaluation in
this study is a gridded mesoscale analysis for Switzer-
land, which is derived from rain gauge observations by
spatial interpolation. The construction of gridded val-
ues is done identically to the daily analysis for Ger-
many used in PAULAT et al. (2008). The underlying
observation network encompasses typically 450 sta-
tions in Switzerland, corresponding to an average sta-
tion distance of 10–15 km (KONZELMANN and WEIN-
GARTNER, 2007). The Alpine in-situ observations are
among the densest world-wide in high-altitude topogra-
phy (FREI and SCHÄR, 1998). Despite slight variations
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in the reading times across the network, the analyses can
be considered as representing 24-hour totals from 06:00
until 06:00 UTC (FREI and SCHÄR, 1998).

The spatial analysis of rain gauge observations is con-
ducted with a modified version of the SYMAP algo-
rithm, a distance and direction weighting scheme by
SHEPARD (1984) (see also WILLMOTT et al., 1985).
In deviation from the traditional scheme, our proce-
dure encompasses an antecedent climatological scaling
of station observations and subsequent re-scaling of the
gridded anomalies with a high-resolution climatology
(SCHWARB et al., 2001). The procedure is similar to
that of WIDMANN and BRETHERTON (2000) and is ap-
plied to reduce systematic errors due to biases in the
distribution of stations with height. In our procedure,
the SYMAP algorithm is applied with a different dis-
tance weighting scheme. The purpose is to represent,
in the analysis, regional area mean values rather than
point values (see FREI and SCHÄR, 1998). The adopted
analysis method is similar to that applied in FREI et al.
(2006), except that the analysis is undertaken originally
on a 2 km grid and is subsequently aggregated to the grid
of the NWP model.

It should be noted that the verification dataset is
affected by systematic biases in the rain gauge mea-
surements. In Switzerland rain-gauge under-catch is ex-
pected to range from about 4 % at low altitudes in sum-
mer to more than 40 % above 1500 m MSL in winter
(SEVRUK, 1985) and has to be considered while inter-
preting the rainfall bias later on. Moreover, there may be
systematic inconsistencies between the model and veri-
fication grids as a result of differences in effective res-
olution. From the observation network we expect an ef-
fective resolution of the verification dataset in the order
of 15 km in the flatlands and 15–25 km in the moun-
tains. This is close but slightly coarser than the model
resolution when taking two nominal grid pixels, i.e. 2x7
km = 14 km, as the effective model resolution.

The error climatology derived in this study is based
on the non-hydrostatic model of the COSMO consor-
tium in operation at the Swiss Federal Office of Meteo-
rology and Climatology (MeteoSwiss). The model is the
Swiss counterpart of the former German Lokal Modell
(LM) described briefly in STEPPELER et al. (2003). It
has been developed for the purpose of high-resolution
weather forecasts with a preferable representation of the
meso-γ scale. A detailed description currently can be
found on www.cosmo-model.org. The horizontal mesh
size of the model is 7 km and the vertical resolution con-
stitutes 45 hybrid height-based levels. The grid structure
is based on an Arakawa C setup with Lorenz vertical
grid staggering. The basic equations are solved in a fully
elastic manner with a dry reference state at rest. Advec-
tion is treated by a split explicit scheme based on a fil-
tered leapfrog time integration (ASSELIN, 1972; SKA-
MAROCK and KLEMP, 1992) with a main time step of
40 s. Moist convection is treated by the mass flux con-

vergence scheme of TIEDTKE (1989). The warm-rain
regime refers to a bulk water-continuity model proposed
by KESSLER (1969) whereas the ice-cloud regime is
based on an extended saturation adjustment technique
(LORD et al., 1984).

The preoperational phase of the model at MeteoSwiss
started in July 2000 and the model became operational
in April 2001. The geographical domain comprises cen-
tral Europe and receives boundary conditions from the
GME model of the German Meteorological Service and
later from the Integrated Forecast System (IFS) of the
ECMWF. The updating of the boundaries is treated with
an adjusted Davies relaxation scheme (DAVIES, 1976).
In the present study, daily precipitation accumulations
of the period between July 2000 and December 2006
are analyzed over Switzerland. Investigations are con-
fined to operational 00 UTC model runs, from which
daily sums are constructed using lead times between 6
and 30 hours.

Since both preoperational and operational forecasts
are evaluated, there are various model updates within
the considered period. Altogether, there are roughly 60
changes of the model setup including bug corrections.
Most of them are not expected to have a significant im-
pact on daily rainfall fields. However, few upgrades are
considered to influence QPF quality decisively. We refer
to the most important changes in Section 5.

2.2 Geographic aspects

Altogether 859 grid points of the COSMO model are
evaluated within the borders of Switzerland (∼41000
km2). To highlight regional disparities with respect to
QPF quality, the whole area is subdivided into six oro-
graphically distinct parts (Fig.1) using contour lines of
the model topography as well as other landmarks. The
area of the Jura comprises the Swiss part of the Jura
mountains as well as some adjacent pixels in the canton
Jura. The low elevations in the Middleland reach from
Lake Geneva in the southwest to Lake Constance in the
northeast. The hilly relief only varies slightly in height
here. The northern Alpine crest as well as the approxi-
mate canton borders between the Valais, the Ticino and
the Grisons split up the Alps into four smaller moun-
tainous domains. The Valais and the Grisons can be re-
garded as central Alpine domains, whereas the Northern
Alps and the Ticino lie on opposing sides of the Alpine
crest. Overall highest elevations (around 3000 m MSL
in the model topography) are found in the middle of the
northern Alpine crest, along the southern border of the
Valais and in the south of the Grisons. They are marked
with an X in Fig.1. Individual regions contain the fol-
lowing numbers of COSMO grid points: Jura 55, Mid-
dleland 271, Northern Alps 208, Valais 114, Ticino 71,
Grisons 140.

http://www.cosmo-model.org
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Figure 2: Difference [mm/day] of 90 % quantile values (COSMO–observations) for different seasons: a) winter, b) spring, c) summer and
d) fall. Lightly hatched grid points indicate observed 90 % quantiles over 10 mm/day and densely hatched grid points indicate observed
90 % quantiles over 20 mm/day.

3 Methodology of verification

The standard 2x2 contingency table (Tab. 1) for di-
chotomous events (relating to a predefined precipitation
threshold) contains the following entries: hits H, misses
M, false alarms F and correct negatives Z. The four num-
bers are used to compute several different categorical
scores (see Section 1 for examples). Varying the thresh-
old from low (representing weak precipitation rates) to
high values (representing strong precipitation rates) ren-
ders possible a comprehensive investigation of different
intensities.

However, there are some shortcomings, if standard
categorical statistics are applied directly. Firstly, a pre-
determined amplitude threshold splits the precipitation
distributions at an unknown percentile, i.e. it is not obvi-
ous a priori whether the threshold represents common or
rare events within the considered sample. In an extreme
case, single cells of the contingency table can become
zero. Then some scores cannot be computed (due to a
division by zero) and statements about model behavior
are hard to make. Secondly, the distributions under com-
parison usually differ considerably with respect to their
range of values and exhibit a distinct offset/bias. Cus-
tomary scores do not fulfill the requirements of equi-
tability (GANDIN and MURPHY, 1992) or fail to be firm
with respect to hedging (STEPHENSON, 2000). Thirdly,

the joint distribution comprises three degrees of free-
dom, if the four entries are only linked to the sample
size. Three scores are required to display all verifica-
tion characteristics. STEPHENSON (2000) proposes the
triplet of odds ratio skill score, PSS and frequency bias.
According to his comments, it is possible to draw com-
plementary information out of the considered datasets,
if concurrent scores are applied simultaneously. But it
remains ambiguous, how to attribute individual verifica-
tion aspects to these measures which project onto each
other. Fourthly, we argue that it is not possible to in-
tegrate amplitude-based scores over a range of intensi-
ties and condense forecast performance in such a way.
In principle, it is not meaningful to average scores for
different thresholds, because it is not obvious how many
data points fall within a certain range of thresholds.

In this study, a refined version of categorical sta-
tistics is proposed to address the above problems and
avoid confusing verification results. The contingency ta-
ble is defined by means of frequency thresholds instead
of amplitude thresholds. To this end, sample quantiles
are computed for both data records independently. Thus,
the two datasets are compared using the same relative
cut-off (according to the definition of a quantile) within
each distribution. In other words, a nonlinear calibration
is performed similar to CASATI et al. (2004) and the bias
is omitted automatically. The full derivation is outlined



832 J. Jenkner et al.: Quantile-based short-range QPF evaluation over Switzerland Meteorol. Z., 17, 2008

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DJF

a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAM

b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JJA

c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SON

d)

Figure 3: Peirce skill score for 90 % quantiles of daily precipitation sums [1: perfect, 0: random forecast]: a) winter, b) spring, c) summer
and d) fall.

in Appendix A. By using quantiles, only one degree of
freedom is left within the contingency table (Appendix
A). It is hence sufficient to acquire a single entry of the
contingency table to determine the joint distribution.

Regardless of the contingencies, the bias in the
quantile-based framework can simply be assessed by the
absolute or relative quantile difference QD or QD′ (Ap-
pendix B). Contrary to the approach of FERRO et al.
(2005), quantile differences are not transformed here,
but reveal differences of rainfall distributions both in lo-
cation and scale. For instance, an underforecasting of
light rainfall can be easily distinguished from an over-
forecasting of heavy rainfall. The overall offset, cov-
ering the entire distribution, can be reproduced by a
weighted integral over the absolute value of relative
quantile differences (QD′, Appendix B, Eq. 2.3). In this
way, amplitude errors are summarized and dissimilari-
ties of the entire distributions are quantified.

As noted earlier, the PSS is able to measure skill
without being perturbed by the base rate (e.g. WOOD-
COCK, 1976; MASON, 1989). The sensitivity to hedg-
ing increases with the rarity of events (STEPHENSON,
2000), as the PSS converges towards the POD. How-
ever, quantile-based contingency tables overcome pos-
sible biases. If the number of predicted events is modi-
fied in the model output or later in the issued forecast,
the definition of a quantile requires that it is compared

to the same number of observed events. Consequently,
quantile-based scores circumvent the problem of hedg-
ing (Appendix C). In respect thereof, the quantile-based
PSS is ideally suited to display the potential accuracy,
i.e. the potential skill, for a calibrated forecast. In other
words, the debiased PSS measures the pixel overlap, i.e.
the matching or the shift of pixels, in an amplitude bal-
anced setup (Appendix C). Due to equal marginal totals
(Appendix A, Eq. 1.1), the debiased PSS merges into
a pure ranking of misses (Appendix C, Eq. 3.2). If the
proportion of misses with respect to their random expec-
tation remains fixed, all forecasts therefore receive the
same constant rating. Given that a certain ratio fulfills
the definition of a constant forecast, it is permissible to
compare PSS values for different quantile probabilities
or base rates directly. In spite of this ability, it has to be
kept in mind that the PSS measures skill in reference to
random chance which might not always be appropriate
for extreme events (compare with STEPHENSON et al.,
2008). Note that the advantages over the conventional
formulation in an uncalibrated setting can be illustrated
by means of a simple forecast example (Appendix D and
Fig. 11). The debiased PSS focuses exclusively on a shift
error and therefore is easier to interpret than its conven-
tional counterpart. Similarly to the QD, the weighted in-
tegral of the debiased PSS over the whole range of quan-
tiles (PSS, Appendix C, Eq. 3.5) summarizes shift errors
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over the entire range of intensities and the overall match-
ing characteristics can be condensed in a single number.

Following the above derivation, we are left with two
complementary measures QD (or QD′) and debiased
PSS which concertedly characterize the overall fore-
cast error, namely bias and debiased overlap/matching
error. Accordingly, the sample uncertainty also subdi-
vides into the two parts (Appendix E). From the course
of the confidence intervals in Fig. 12, it can be gleaned
that the quantile-based PSS remains much better defined
for rare events than the conventional amplitude-based
PSS. Quantile probabilities are not affected by ampli-
tude uncertainties, but their transformation to precipita-
tion amounts is. We can achieve a high confidence for
the PSS value of a certain quantile, but still hold a low
confidence for the precipitation estimation of the quan-
tile. Some applications require a link to rainfall amounts
whereas others only require a link to frequencies, i.e. re-
turn periods, which are automatically provided by quan-
tiles.

4 Seasonal error climatology

In the following, we apply the proposed verification
framework to the 6.5-year forecast climatology. Initially,
the focus is on seasonal error discrepancies. Quantile
differences and debiased PSS values are computed for
all seasons independently. First of all, error charts for
the 90 % quantiles are discussed revealing gridbox-
scale error variations. The corresponding thresholds are
exceeded on every tenth day and expected to reflect
universal QPF errors of reasonably strong events. Then,
the grid-point based scores are aggregated, i.e. applied to
regions as a whole. Verification measures are computed
for the compound data (grid points × days) of our six
predefined domains (Fig.1) and discussed with respect
to the whole range of intensities. Finally, the regional
model performance is reviewed with the aid of integral
error values summarizing the overall performance.

4.1 Grid-point based verification of 90 %
quantiles

Throughout all seasons, a strong wet bias is evident over
the Northern Alps (Fig.2). During the course of the year,
the observed 90 % quantiles roughly account for values
between 10 mm/day (winter) and 25 mm/day (summer).
However, they are more than 20 mm/day or locally 30
mm/day higher in the model forecasts. This bias is con-
fined to few grid points during spring and fall but affects
much larger areas during winter and summer. In addition
to the Northern Alps, some parts of the Valais and the
Grisons are also significantly overforecast. Even though
the observed 90 % quantiles mostly remain below
10 mm/day during winter, spring and fall, the overesti-
mation in the model partly amounts up to +20 mm/day
at these times of the year. Thus, the relative amplitude

errors are largest by far in these areas. In the Ticino, the
bias is similar to the Northern Alps during spring and
summer, but it almost vanishes during winter and only
is noticeable at few grid points during fall. A closer look
reveals that the bias is linked directly to the hillside of
the topography. In the northern and central parts of the
Alps, northwest aligned slopes are strongly overforecast
whereas southeast aligned slopes are weakly or moder-
ately underforecast. In the Ticino, the strongest overpre-
diction resides over southerly oriented slopes, but only
appears clearly during spring and summer (Figs. 2b, c)
and at specific grid points during fall (Fig. 2d). The
deep valleys in the interior of the Alps (mainly the up-
per Rhône and Rhine Valleys) and their direct surround-
ings are clearly underforecast. The strongest dry bias is
found directly to the south of the northern Alpine crest.
It is most pronounced during summer with peak values
around −20 mm/day (Fig. 2c).

Regardless of the bias, seasonal matching charac-
teristics vary substantially within Switzerland (Fig. 3).
Generally, the regional PSS pattern is noisiest during
summer and smoothest during fall. During winter, the
matching clearly is linked to the topography. Western
slopes display much higher PSS values than their east-
ern counterparts at this time. In particular, there is a dis-
tinct spatial PSS minimum (Fig. 3a) to the southeast of
the highest point in the northern Alpine crest (marked
in Fig. 1). Noteworthy, the best pixel overlap is found
in the Ticino throughout the year. Both during winter
and fall, the debiased PSS locally reaches values over
0.8 in the Ticino corresponding to a debiased POD over
0.82 (see Appendix C, Eq. 3.4 for this calculation). All
over Switzerland, the poorest matching is detected dur-
ing summer (Fig. 3c). The PSS values barely pass 0.6 in
the Ticino and some places elsewhere and only vary be-
tween 0.2 and 0.4 in the Middleland, the Valais and the
Grisons. Note that a debiased PSS of 0.2 only implies
a debiased POD of 0.28 (Appendix C, Eq. 3.4). During
spring and fall, the matching is different on both sides of
the Alps. The pixel overlap in the Ticino is poorer dur-
ing spring compared to fall, even though it is still supe-
rior to other regions. In contrast, it is slightly improved
in the Valais and the Grisons during spring compared
to fall. On the Alpine north side, there are distinct sec-
tors with PSS values around 0.35 and 0.55 during spring,
whereas the matching is surprisingly uniform with val-
ues around 0.5 during fall. The clearest and most consis-
tent regional separation is found late in the year. During
fall, the pixel overlap is superior in the Ticino, inferior in
the Valais and in the Grisons and middle-rate further to
the north. Simultaneously, a prominent PSS gradient is
present to the north of the Ticino and over the northern
Alpine crest.

4.2 Regional verification of quantile courses

To detect possible error variations for different intensi-
ties, it is necessary to consider the whole range of quan-
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Figure 4: Observed quantile values [mm/day] for discrete quantile probabilities: a) winter, b) spring, c) summer and d) fall.

Table 2: Weighted integral QD′ values for different domains and seasons (winter, spring, summer, fall). The scoring shows the relative
amplitude deviation and is explained in Appendix B [0.1 =̂ 10.5 % deviation, 0.2 =̂ 22.2% deviation, 0.3 =̂ 35.3 % deviation]. The darker
the shading the higher are overall observed rainfall amounts. CH stands for the whole of Switzerland.

Jura Middlel. N. Alps Valais Ticino Grisons CH

DJF 0.27 0.13 0.45 0.18 0.15 0.33 0.24

MAM 0.17 0.08 0.25 0.16 0.36 0.22 0.13

JJA 0.10 0.13 0.23 0.24 0.30 0.04 0.11

SON 0.22 0.13 0.19 0.12 0.11 0.22 0.06

tiles. Therefore, our verification measures are applied to
entire regions. The respective quantile values of the ob-
servations are given in Fig. 4 as reference. Since the 50
% quantiles mostly fall below 0.5 mm/day, dry quan-
tiles beneath are omitted in the graphs. Most notably, the
Jura and the Northern Alps consistently display highest
quantile values during winter and spring, meaning that
rainfall amounts are highest here. Later in the year, the
Ticino clearly entails highest quantile values for quan-
tile probabilities above 90 %.

Figure 5 displays the quantile-based measures QD and
PSS for different quantiles. Concerning the bias, there is
the general tendency that weak intensities are slightly
overforecast, medium intensities are slightly under- or
overforecast and strong intensities are either strongly
overforecast or moderately underforecast. However, dis-
tinct regions are exceptions from this archetype. On the

one hand, the following domains are severely under-
forecast for almost all quantiles: the Jura during winter,
spring and fall and the Valais during summer. On the
other hand, the following domains are greatly overfore-
cast for all quantiles: the Northern Alps all over the year
and the Ticino during spring and summer. Interestingly,
heavy precipitation in the Ticino is underforecast during
winter and fall. Obviously, the bias on the Alpine south
side substantially changes between the two halves of the
year.

Concerning the matching, the Ticino mostly holds the
highest PSS values compared to the rest of Switzerland.
As an indication of good performance, the debiased PSS
in the Ticino is almost independent from the quantile.
Only above the 90 % quantile, a sharp drop occurs which
is most prominent during winter and fall. Low quantiles
(50 %–65 %) usually entail a better matching in north-
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Figure 5: Area-average of the quantile difference (gray, left scale) [mm/day] and the Peirce skill score (black, right scale) for quantiles
between 50 % and 99 %: a) winter, b) spring, c) summer and d) fall.

Table 3: Weighted integral PSS values for different domains and seasons (winter, spring, summer, fall). The higher the value the better
is the overall matching performance. The darker the shading the higher are overall observed rainfall amounts. CH stands for the whole of
Switzerland.

Jura Middlel. N. Alps Valais Ticino Grisons CH

DJF 0.48 0.46 0.46 0.41 0.63 0.43 0.46

MAM 0.49 0.47 0.43 0.38 0.56 0.41 0.45

JJA 0.34 0.36 0.41 0.34 0.47 0.36 0.39

SON 0.43 0.46 0.43 0.38 0.60 0.38 0.46

ern regions, meaning that light rainfall events are less
accurately predicted in the Ticino than elsewhere. As
opposed to other regions, the PSS curve is very consis-
tent in the north where the error distributions of the Jura,
the Middleland and the Northern Alps are very similar.
Only during summer and for low quantiles, PSS values
over the Northern Alps diverge slightly from the regions
further to the west. In comparison to northern territories,
the PSS is up to 0.1 lower/worse in the central Alps. Ex-
cept for some extreme quantile values, the pixel over-
lap always is most critical either in the Valais or in the
Grisons.

4.3 Rating of integral values

To survey the overall model performance with respect
to individual seasons and domains, we discuss weighted
error integrals (Tabs. 2 and 3) as a condensed view of
Fig. 5 (see Appendix B, Eq. 2.3 and Appendix C, Eq.
3.5 for further details). The integral bias (QD′) is high-
est during winter. QD′ constitutes 0.45 over the North-
ern Alps which is equivalent to an amplitude deviation
of more than 50 %. This means in this case that all in-
tensities are overestimated on average by half of their
rainfall value. At the same time, QD′ amounts to 0.27
and 0.33 over the Jura and over the Grisons, respec-
tively. This is equivalent to an amplitude deviation of
more than 30 %. On the Alpine south side, the rela-
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Figure 6: Difference [mm/day] of 90 % quantile values (COSMO-observations) for different model generations: a) IGD, b) NGD, c) NID
and d) NIP. Lightly hatched grid points indicate observed 90 % quantiles over 10 mm/day and densely hatched grid points indicate observed
90 % quantiles over 20 mm/day.

tive bias is highest during spring. The Ticino entails a
QD′ of 0.36 between March and May which implies a
deviation of more than 40 %. Lowest regional model
biases are observed over the Middleland during spring
and over the Grisons during summer. Interestingly, QD′

only accounts for 0.04 over the Grisons during summer,
meaning that the rainfall distributions only differ by 4 %
in this region. Throughout Switzerland, QD′ is lowest
during fall. However, regional values are partly higher
than for the rest of the year, meaning that regional bi-
ases cancel each other out in the overall average. The
integral matching score (PSS) generally is lowest during
summer. Throughout Switzerland, the integral value is
0.06 lower between June and August than for the rest of
the year. In all seasons, the PSS is highest in the Ticino.
Especially during fall, the integral value is almost 0.2
higher here than for the rest of Switzerland. Other out-
standing regions are the Jura and the Middleland during
spring and to a lesser extent the Northern Alps during
winter. These areas exhibit a good matching and rainfall
shifts are comparatively small here. In contrast, the over-
all worst matching is seen in the Jura, the Middleland,
the Valais and the Grisons during summer as well as to
a slightly smaller extent in the Valais and the Grisons
during fall. The lowest value of 0.34 for the Jura and
the Valais during summer corresponds to roughly 75 %
more mismatching grid points (misses or false alarms)

than for the largest value of 0.63 for the Ticino during
winter.

5 Differentiation of model designs

There are three decisive model updates within the oper-
ational phase of the COSMO model which are expected
to affect QPF to a large extent. First of all, a continu-
ous assimilation cycle (STAUFFER and SEAMAN, 1994)
replaced a pure interpolation of initial values from the
driving model. Wind, pressure, temperature and humid-
ity have been nudged towards surface and upper-air ob-
servations since then. Later, there was a changeover of
the driving model at the boundaries. The COSMO model
was driven by the GME in the early stages, before the
IFS has been used in exchange. The switch-over allowed
the COSMO model to benefit from high-quality fea-
tures of the ECMWF model such as the 4D Var analysis.
Finally, the prognostic precipitation scheme substituted
a diagnostic treatment with the assumption of column
equilibrium for precipitation particles. Hence, hydro-
meteors have been advected by the ambient flow with
different sedimentation velocities for snow and rain.

We apply our refined measures in the same manner
as for the seasons (Section 4) and quantify the impacts
of the model updates on QPF performance. The four
consecutive periods which are separated by these three
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Figure 7: Peirce skill score for 90 % quantiles of daily precipitation sums [1: perfect, 0: random forecast]: a) IGD, b) NGD, c) NID and d)
NIP.

updates are evaluated in the following. The first phase
(named IGD) comprises all days between 01/07/2000
and 30/10/2001. It features the interpolation for the ini-
tialization, the GME at the boundaries and the diag-
nostic precipitation. The second phase (NGD) ranges
from 31/10/2001 until 15/09/2003 and already features
the nudging assimilation. The third phase (NID) uses
the IFS instead of the GME boundary fields and covers
all days between 16/09/2003 and 15/11/2004. The latest
model setup (NIP) runs additionally with the prognostic
precipitation and covers the period between 16/11/2004
and 31/12/2006. Note that the seasonal composition
of the four slices is very similar. Despite the interan-
nual variability of the errors, we consciously consider
all seasons together to retain reasonable sample sizes.
Strongest climatological anomalies are found during
IGD with much higher rainfall amounts than afterwards.
In fact, there were some persistent rainfall episodes from
October until November 2000 and from March until
April 2001. The former were active on the Alpine south
side whereas the latter mostly affected the Alpine north
side.

5.1 Grid-point based verification of 90 %
quantiles

During IGD, error patterns are significantly noisier than
afterwards (Figs. 6a and 7a). Reasons are found dur-
ing the first four months of the preoperational phase,

when the model ran without a filtered orography (also
pointed out in the outlook of KAUFMANN et al., 2003).
Daily precipitation fields are very spotty at that time and
do not succeed in capturing area-wide rainfall. How-
ever, principal strengths and weaknesses of the COSMO
model are already evident in the primary model setup.
The overestimation over the northern Alpine foothills,
the underestimation in the interior of the Alps, the good
matching in the Ticino as well as the poor matching in
deep Alpine valleys are obvious during IGD. The dry
bias along the low elevations of the Middleland and es-
pecially inside the Alps affects a much larger area than
afterwards. More than 40 % of all Alpine grid points
over 1500 m MSL are underforecast with an offset worse
than −5 mm/day. However, observed 90 % quantiles are
roughly 5 mm/day higher than later on, meaning that the
relative offset is comparatively low. The pixel overlap is
most deficient at the western edge of the Valais and over
the Jura mountains. At some grid points, the debiased
PSS only constitutes about 0.15 which is equivalent to a
debiased POD around 0.24 (Appendix C, Eq. 3.4).

The next two phases NGD and NID are unlike IGD
but similar to each other. The percentage of severely un-
derforecast grid points over 1500 m MSL only drops
down from 20 % during NGD to 14 % during NID (Figs.
6b, c). The only outstanding difference is given by the
diverging matching evolution in the south (Figs. 7b,c).
During NGD, the pixel overlap measured by the debi-
ased PSS is average both in the Valais and the Ticino in
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comparison to other phases. During NID, the pixel over-
lap is inferior in the Valais and superior in the Ticino.
Reasons for this disparate behavior are not obvious and
need to be investigated in further detail. The matching
with the IFS at the boundaries leads to a considerably
better performance in the Jura and the Middleland than
before. In contrast to the Valais and the Grisons, the de-
biased PSS exclusively remains over 0.3 here.

The change of the precipitation scheme implicates the
most conspicuous forecast improvements. Very clearly,
the matching improved all over the country (Fig. 7d).
During NIP, the debiased PSS varies between 0.3 and
0.8 without exception. Above all, the pixel overlap in
the main Alpine valleys improves significantly. Former
PSS values around 0.3 rise to values around 0.5 which
implicates that the hits H are 1.5 times more frequent
than before. The poorest matching still is found through-
out the Grisons and over some parts of the northern
Alpine ridges. Aggregated over the Valais, the PSS for
the 90 % quantiles rises from 0.33 during NID to 0.54
during NIP (Figs. 7c, d; compare with the 90 % quantile
location in Figs. 9c, d). Aggregated over Switzerland,
it rises from 0.47 to 0.56. In contrast to the pixel over-
lap, the bias over the Alps displays an ambivalent trend
during NIP (Fig. 7d). Precipitation now is advected to
areas which have been underforecast before and max-
ima of the underestimation are less severe. The dry bias
rarely falls below −5 mm/day and no longer falls below
−10 mm/day. However, maxima of the overestimation
simultaneously are broadened and partly extend to the
lee inside the Alps. Peak values of the bias only drop
down from +30 mm/day to +20 mm/day. Therefore
the areal overestimation strongly worsens over some
Alpine slopes and in particular in the center of the
Grisons. Aggregated over the Grisons, the overcharge of
the 90 % quantiles rises from ∼0 mm/day during NID
to +2.9 mm/day during NIP (Figs. 6c, d; compare with
the 90 % quantile location in Figs. 9c, d). Aggregated
over Switzerland, it changes from −0.1 mm/day to +1.6
mm/day.

5.2 Regional verification of quantile courses

Developments of regional error characteristics for a
range of rainfall intensities can be gleaned from Fig. 9.
The respective quantile values of the observations are
given in Fig. 8 as reference. It is obvious that observed
rainfall amounts are much higher during IGD than after-
wards. Most notably, the quantile values are about 50 %
higher in the Ticino and the Grisons than later on. In
contrast, least rainfall is observed in the latest phase NIP.

Astonishingly, the regional bias in the first model
setup IGD is remarkably small, especially for low in-
tensities (Fig. 9a), even though related quantiles stand
for higher rainfall amounts than afterwards (Fig. 8a).
However, it has to be kept in mind that the aggregated
quantile difference does not display local rainfall shifts

within one region. Thus, a simultaneous overestima-
tion and underestimation within one domain cancel each
other out. Given the noisiness of the IGD field, this
might explain the small QD values. During NGD, re-
gional amplitude errors increase considerably, above all
for lower intensities. Simultaneously, the debiased PSS
rises in all regions considerably. The improvements are
largest in the northern regions. PSS values in the Jura,
the Middleland and the Northern Alps are enhanced by
almost 0.1 for small quantiles (∼70 %). The alteration
stands out least in the Ticino where the performance al-
ready has been very good. Improvements between NGD
and NID are not self-evident. In central Alpine regions,
the matching remains insufficient for most quantiles.
Above all, the debiased PSS is lowered in the Valais for
quantile probabilities between 75 % and 95 %. In con-
trast, the outstanding pixel overlap in the Ticino even
changes for the better for almost all quantiles. In regions
to the north, the matching is slightly worse during NID
than before for quantile probabilities below 75 %, but
it is slightly improved during NID for quantiles above.
Considering NIP, improvements for all quantiles are re-
markable. The values of the PSS only slightly drop off
towards high quantiles. The performance for 60 %, 70 %
and 80 % quantiles is very similar now. However, an in-
crease of the overestimation is also obvious during NIP
for all quantiles. Only the comparatively flat Middle-
land remains almost bias-free. The amplitude error in
the Ticino remains constant, but the bias is drastically
increased to the north. In particular, low and medium in-
tensities are now significantly overforecast in all Alpine
areas. For example, the 70 % quantile offset increases in
the Northern Alps from +0.6 mm/day to +1.8 mm/day
(compare Figs. 9c, d). Note that the related 70 % quan-
tiles values roughly constitute 3 mm/day in the observa-
tions (Fig.8c, d).

5.3 Model description

5.4 Rating of integral values

The integrated scores recapitulate the QPF behavior ex-
plained above. The integral performance strongly de-
pends on regional characteristics and QPF improve-
ments deeply vary among the domains. The average
quantile difference (Tab. 4) clearly increases over the
Jura between IGD and NGD. QD′ rises from 0.07 to
0.29 implying that relative deviations increase from 7 %
to almost 35 % along the distributions under compari-
son. At the same time, amplitude errors level off over
the Middleland and diversely change over the Alps.
However, the most conspicuous worsening of the bias
is obvious during NIP. All over Switzerland QD′ rises
from 0.09 to 0.22 implying that deviations grow from
9 % to 25 %. None of the Alpine regions has its low-
est QD′ value in the last period with the most sophis-
ticated model version. The change is most critical over
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Figure 8: Observed quantile values [mm/day] for discrete quantile probabilities: a) IGD, b) NGD, c) NID and d) NIP.
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Figure 9: Area-average of the quantile difference (gray, left scale) [mm/day] and the Peirce skill score (black, right scale) for quantiles
between 50 % and 99 %: a) IGD, b) NGD, c) NID and d) NIP.
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Table 4: Weighted integral QD′ values for different domains and periods. The scoring shows the relative amplitude deviation and is explained
in Appendix B [0.1 =̂ 10.5 % deviation, 0.2 =̂ 22.2 % deviation, 0.3 =̂ 35.3 % deviation]. The darker the shading the higher are overall
observed rainfall amounts. CH stands for the whole of Switzerland.

Jura Middlel. N. Alps Valais Ticino Grisons CH

IGD 0.07 0.13 0.16 0.18 0.14 0.22 0.07

NGD 0.29 0.07 0.26 0.23 0.15 0.19 0.09

NID 0.28 0.12 0.28 0.08 0.14 0.07 0.09

NIP 0.13 0.07 0.38 0.17 0.30 0.37 0.22

Table 5: Weighted integral PSS values for different domains and periods. The higher the value the better is the overall matching performance.
The darker the shading the higher are overall observed rainfall amounts. CH stands for the whole of Switzerland.

Jura Middlel. N. Alps Valais Ticino Grisons CH

IGD 0.34 0.38 0.37 0.30 0.49 0.34 0.39

NGD 0.40 0.38 0.39 0.32 0.58 0.35 0.40

NID 0.44 0.42 0.44 0.34 0.61 0.39 0.44

NIP 0.52 0.52 0.51 0.49 0.59 0.48 0.51

the Ticino and the Grisons where QD′ rises from 0.14
to 0.30 and from 0.07 to 0.37, respectively. The bias
only improves over the Jura and the Middleland between
NID and NIP. Interestingly, QD′ continuously increases
within the four phases for the Northern Alps. The value
rises from 0.16 during IGD to 0.38 during NIP. Concern-
ing PSS (Tab. 5), QPF performance definitely is best for
the latest model version. Except for the Ticino, where
the pixel overlap already has been superior before, all
regions display their highest PSS during NIP. Thus, the
great improvement of advecting precipitation by the am-
bient flow is brought out clearly by the summary mea-
sure. Considering all phases, the matching is upgraded
most in the Jura and the Valais where PSS rises by al-
most 0.2 between IGD and NIP.

6 Interpretation of verification results

Some aspects are worthwhile noting in the interpretation
of our results. Firstly, the observational precipitation
analysis is not perfect. In particular, it exhibits a nega-
tive bias (too low values) due to systematic measurement
errors. In the Alpine region, this bias is less than 12 %
from spring to fall, but can reach several tens of per-
cent in winter for exposed stations above 1500 m MSL
(SEVRUK, 1985; RICHTER, 1995). Although the rain-
gauge under-catch may possibly explain some part of
the apparent quantile overestimation in winter, the over-
all characteristics of the model errors remain valid. The
magnitude of the model bias is substantially larger than
the expected measurement bias. Note that only about 10
% of the rain gauge stations are at elevations above 1500
m MSL even in inner Alpine regions (see e.g. Fig. 6
in FREI and SCHÄR, 1998) and hence the bias in the
observational analysis is much smaller than that at sin-
gle exposed stations. Moreover, our primary focus is on

high quantiles (i.e. intense rainfall or heavy snowfall)
for which the measurement bias is considerably smaller
than for light events.

Generally, our verification results agree with those
found by ELEMENTI et al. (2005) in case studies. First
and foremost, the severe overestimation at the Alpine
fringe is confirmed. The COSMO model versions un-
der consideration seem to have problems to represent
the correct flow and moisture field around orography.
The windward side receives too much and the lee side
too little precipitation. This behavior is most pronounced
with the diagnostic precipitation scheme, but still holds
for the prognostic scheme. Further investigations (not
shown) have proven that the overestimation mostly
stems from the resolved part of the total rainfall (see
KAUFMANN et al., 2003, for comparison) which holds
especially for very strong events. Recent tests with the
COSMO model revealed that a three-step Runge-Kutta
time integration scheme (WICKER and SKAMAROCK,
2002) partly rectifies the overestimation on the wind-
ward side of a mountain (D. LEUENBERGER (Me-
teoSwiss), pers. comm.). However, it remains ambigu-
ous, how inconsistencies of the used leapfrog scheme
affect the formation of precipitation and cause the off-
sets on the windward side.

A closer look reveals that the overestimation is most
pronounced over higher elevations during winter. Even
though the results are slightly exaggerated by wintertime
measurement errors, snowfall seems to be more over-
stated than rainfall. This can be attributed to problems
with the cloud ice scheme for the winters 2003/2004
and 2004/2005 (F. SCHUBIGER (MeteoSwiss), pers.
comm.).

Interestingly, the common pattern with a wet bias
at the foot of mountains does not always hold for the
Alpine south side. In opposition to the findings dis-
cussed above, there is a slight dry bias over the Ticino
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during winter and fall. Obviously, a drying of the water
cycle is superimposed to the usual overestimation of pre-
cipitation at the Alpine fringe. Comparisons of COSMO
forecasts and COSMO analyses revealed that forecasts
over the Po valley tend to be significantly dryer than
in the corresponding assimilation cycle. Apparently, the
water balance in the COSMO model is predisposed to
leak over the northwest of Italy. However, the cause of
this is not clear and requires further investigation.

A positive correlation between the quantile difference
and the debiased PSS can be confirmed statistically for
the diagnostic precipitation scheme. In other words, the
debiased PSS usually is higher for positive quantile dif-
ferences than for negative ones. The reason is the ab-
sent horizontal transport of hydrometeors which pro-
duces both an underestimation and a poor matching on
the lee side of mountains. By introducing the prognos-
tic precipitation scheme, this correlation vanishes. The
bias no longer interferes significantly with the matching
and a main error source which affected both verification
components seems to be removed. Note that this behav-
ior only is proven so clearly, because all intensities are
related to quantiles/frequencies and not to amplitudes.

At the same time, a significant worsening of the wet
bias is evident during the latest model phase. In partic-
ular over the Ticino and the Grisons, the relative offset
of the distributions under comparison increased drasti-
cally. Most notably, southerly flow now entails a much
higher wet bias than before. Possible explanations re-
late to unmentioned model updates like a change of the
cloud ice scheme, the introduction of prognostic turbu-
lent kinetic energy or the switch of the IFS boundary
fields to higher resolutions. Overall, it is most suspect
that too much moisture is advected towards the Alps by
the driving model. Again, implications of verification re-
sults do not transfer directly to model diagnosis and the
original error source remains to be investigated.

One of the most outstanding findings is the high qual-
ity of the pixel overlap on the Alpine south side. As
shown in Section 4, the pixel overlap in the Ticino is
much better than elsewhere and is present throughout the
year and throughout all model versions. It is most man-
ifest for strong intensities and most pronounced during
winter and fall (Figs. 5a,d). Explanations are found in
the special geographical position of southern Switzer-
land in connection to the prevailing synoptic flow pat-
terns. Meridionally aligned stratospheric intrusions de-
termine the large-scale predictability of heavy precipi-
tation (e.g. FEHLMANN and QUADRI, 2000; MARTIUS
et al., 2006) and primarily support the enhanced pixel
overlap during fall. The relief of the Ticino is uniformly
aligned to the south and lee effects play a minor role
for a southerly flow. The high predictability also is sup-
ported by idealized model simulations of GHEUSI and
DAVIES (2004). They found that orographically induced
precipitation enhancements in southern Ticino are com-
paratively insensitive to the changes in direction and

speed of the incident flow from south to southwest or
from 10 to 30 m/s. In addition to its favorable exposure
to the south, the Ticino is shielded by the Alpine crest for
northerly flow directions. Embedded shallow fronts pro-
vide a potential for misforecasts on the windward side,
but are obstructed by the Alpine crest and do not affect
the Ticino (E. ZALA (MeteoSwiss), pers. comm.). Their
frequency maximum on the windward side during the
cold season (JENKNER et al., in press) supports this ex-
planation for an enhanced wintertime pixel overlap in
the Ticino.

Concerning the seasonal cycle, it is obvious that the
pixel overlap is highest during winter (in some regions
also during fall) and lowest during summer. In this re-
gard, model performance strongly anticorrelates with
the amount of convective precipitation or likewise with
the boundary layer height. The dependency emerges
clearly in our results and is worthwhile mentioning, even
though convection schemes are already well-known to
present difficulties to QPF (e.g. ELEMENTI et al., 2005).
The interaction of the boundary layer and the free at-
mosphere is well-developed during the convective sea-
son and challenges the interplay of parameterized and
resolved processes in current NWP models. The final
outcome is a degradation of the local skill in convective
situations.

7 Summary

In the present study a novel treatment of the tradi-
tional categorical verification has been presented. By
using frequency thresholds instead of amplitude thresh-
olds, deterministic verification applications clearly ben-
efit from the quantile-based formulation of the verifica-
tion problem. We propose to use the absolute or rela-
tive quantile difference to describe the bias and the de-
biased/calibrated Peirce skill score to describe the po-
tential pixel overlap. In this way, the total error is split
up into an amplitude part and a matching part. If mul-
tiple quantiles are taken into account, spectral perfor-
mance can be assessed. This setup allows for a meaning-
ful juxtaposition of different value ranges and renders
possible a meaningful evaluation of individual intensi-
ties. In this context, our distribution-oriented approach
makes a decisive step towards equitable scores, as de-
fined by GANDIN and MURPHY (1992). In our opinion,
it is more meaningful for model developers to relate ver-
ification results to characteristic numbers of the model
output (e.g. quantiles) than to a priori fixed limits such as
amplitudes. The main advantages and challenges of the
refined approach are itemized here for recapitulation:

• The degrees of freedom within the contingency ta-
ble reduce to one. The information content of a cali-
brated forecast can be displayed by a single score.
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• Owing to the use of quantiles, the conducted de-
biasing has a physical validity and only relates to
the characteristics of the distributions under compar-
ison. Such a straightforward calibration cannot be
achieved so easily by other approaches.

• The whole range of precipitation intensities can be
assessed by looping over quantiles. Different value
ranges are related to each other in a consistent and
comprehensive way.

• The Peirce skill score strongly simplifies with the
use of quantiles. The debiased PSS quantifies the
potential skill in a calibrated forecast and is no longer
susceptible to hedging. In the presented formulation,
the PSS offers the possibility to compare results for
different base rates without being affected by the
marginal distributions.

• Synoptic biases or gridding errors do not influence
the matching error score, if they are applied to ho-
mogenous subsets (in our case orographically dis-
tinct areas) with a consistent bias behavior.

• Scores can be integrated over all quantiles while
weighting them accordingly. In such a way, verifi-
cation results do not only refer to a single thresh-
old, but take into account spectral performance with
a tunable resolution. Thus, the overall performance is
condensed meaningfully and allows for a quick QPF
overlook, for example for administrative purposes.

• As a slight drawback, quantiles universally are less
intuitive than fixed thresholds. A verification which
is issued to the public requires values to be linked
to proper rainfall amounts due to convenience. It can
be speculated, whether model developers, forecasters
and end-users become more familiar with the refer-
ence to quantiles in the future.

• The interpretation of the debiased PSS might remain
slightly ambivalent for rare events. It is not clear, if
random chance always provides a meaningful refer-
ence for the definition of forecast skill. Especially in
the tail of rainfall distributions, special reference dis-
tributions might be beneficial (STEPHENSON et al.,
2008).

• Error sources in NWP models can be tackled in
a straightforward way. If a model always exhibits
a distinct bias, the forecast can never be perfect.
Thus, it is meaningful to rate the bias beforehand and
evaluate the residual error afterwards.

The methodology has been applied to 6.5 years of pre-
operational and operational forecasts from the Swiss im-
plementation of the COSMO model. Seasons and model
versions have been evaluated separately. 90 % quantiles
have been investigated in detail and quantile courses
have been discussed for six predefined regions. The most
important results are recapitulated in the following:

• Regional QPF performance is strongly determined
by local orography in connection with the impinging
flow direction. Distinct areas with a good and poor
pixel overlap can be identified. The fine-scale error
structure emerges most clearly during winter.

• The COSMO model exhibits a persistent overestima-
tion over the Alpine foreland and a transient underes-
timation over interior valleys (primarily during win-
ter and summer and with the diagnostic precipitation
scheme). The Alpine south side partly is an excep-
tion with comparatively low seasonal amplitude er-
rors during winter and fall.

• Overall matching characteristics are worst during
summer. All over Switzerland, the pixel overlap is
roughly 6–7 % worse during summer than during the
rest of the year. Seasonal disparities are even higher
over the Jura and the Ticino. Altogether, the match-
ing is worst over the Jura and the Valais during sum-
mer.

• The potential skill of the calibrated forecast is much
higher on the Alpine south side than on the north
side. On average, the pixel overlap is roughly 15 %
better over the Ticino than elsewhere.

• The matching continuously improves within the val-
idated period and can be clearly attributed to up-
dates of the COSMO model. All over Switzerland,
the pixel overlap is 12 % better in the latest consid-
ered phase than in the first one.

• The overall bias is worst by far in the latest consid-
ered phase. The percentaged amplitude error consti-
tutes about 9 % between 2000 and 2004, but it rises
to 25 % between 2005 and 2006. Note that the bet-
ter matching characteristics with the prognostic rain-
fall scheme in the latest phase could not be visible so
clearly with the conventional PSS, because the bet-
ter rainfall overlap is masked by the large bias in an
uncalibrated forecast.

The steep orography in Switzerland imposes a severe
constraint on QPF performance. The discussed QPF er-
rors above exhibit a strong dependency on weather pat-
terns with specific flow features in conjunction with the
complex terrain. Thus, it is instructive to study model
performance with respect to different synoptic situa-
tions. Such a study will be conducted with a consistent
version of the COSMO model in a follow-up paper.
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Figure 10: Possible entries (gray shaded) and random expectation values (thick black lines) of the four entries in the quantile-based
contingency table: a) hits H(p), b) misses M(p) or false alarms F(p), c) correct negatives Z(p). Light gray indicates the area without
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the range of quantile probabilities p whereas the y-axis shows the proportion of the sample size H/N, M/N or F/N and Z/N.
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A Quantile-oriented binary
contingency tables

The entries of the standard 2x2 contingency table
(Tab. 1) are defined by means of sample quantiles in-
stead of a preassigned threshold value. Thus, the mar-
ginal distributions (H+F, Z+M, etc.) are fixed automati-
cally. The forecast data are calibrated in such a way that
the decision criterion is changed while the underlying
distributional overlap is maintained (compare with sig-
nal detection theory, SWETS, 1988). If the same quantile
probability is chosen for the observations and the fore-
cast (p ≡ pobs = pmod), the event frequency is the same
in both datasets. Two additional interrelations are then
incorporated into the conceptual formulation:

M = F M + Z = pN (1.1)

Firstly, the misses M equal the false alarms F and the
bias automatically is removed from subsequent consid-
erations. Secondly, the quantile probability p by defini-
tion sets the base rate to 1 − p (note that the definition
here is not p as in most of the literature) and divides the
sample into (1 − p)N events and pN non-events. Thus,
all four entries H, M, F and Z additionally are linked to
p itself. Since the sample size N=H+M+F+Z is given,
the four numbers are connected by a total of three con-
straints. Only one degree of freedom is left and uniquely
describes the joint distribution.

The determination of p imposes stringent restrictions
on the valid range of the four entries in the contingency
table. Depending on p, the four counts only vary within
a limited span (Fig. 10). If the quantile probability is
below 0.5, there are always some hits H by definition,
as exceeding events cover more than half of the sam-
ple. If the quantile probability is above 0.5, there are al-
ways some correct negatives Z by definition, as exceed-
ing events cover less than half of the sample. The misses

M and false alarms F consistently are limited at the top.
The maximum numbers Mmax and Fmax are equal and
restricted either by the number of non-events (p ≤ 0.5)
or by the number of events (p ≥ 0.5). Just in case of the
median (p = 0.5), all four counts hold the same range
of values. Then the setting is balanced and the number
of hits H by definition equals the number of correct neg-
atives Z.

Due to rules of combinatorics, the probability for the
worst possible forecast with the maximum number of
non-matching pixels is a function of both p and N and
can be written as:

P
〈
M = Mmax

〉
=

⎧⎪⎪⎨
⎪⎪⎩

((1−p)N
pN )

( N
pN)

for p ≤ 0.5

( pN
(1−p)N)

( N
(1−p)N)

for p ≥ 0.5
(1.2)

Note that the binomial coefficients only can be com-
puted, if pN and (1 − p)N denote integers. Owing to
Eq. 1.2, it is hardest to miss all events or all non-events
in case of the median (p = 0.5) and easiest in case of
extreme quantile probabilities.

A random forecast divides the joint distribution into a
region with skill and one without skill. The borderline is
(1 − p)2N for the hits, (p − p2)N for the misses or false
alarms and p2N for the correct negatives (Fig. 10). Thus,
a valuable forecast always exhibits less than (p − p2)N
misses/false alarms. In case of the median (p = 0.5), the
border consistently resides at N/4 which is in the center
of valid ranges. It gradually approaches a margin for p
converging towards 0 or 1.

B Quantile differences
Certain sample quantiles are useful in an exploratory
rainfall verification. The quantile-quantile plot is useful
in small datasets, but it is beneficial to map quantile dif-
ferences in gridded samples (FERRO et al., 2005). In our
context, the quantile difference directly exhibits a dis-
tinctive amplitude error, i.e. bias between the datasets:

QD(p) = qmod(p) − qobs(p) (2.1)
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Figure 11: Forecast example of predicting daily rainfall amounts for 8 days: a) observations, b) first forecast and c) second forecast. The
selected amplitude threshold (AT) constitutes 3 mm/day. The selected frequency threshold (FT) corresponds to the 50 % quantile. The
conventional PSS based on the AT accounts for 0.5 in both forecasts. The debiased PSS based on the FT accounts for 0.5 and 1 for the first
and second forecast, respectively.

As an option, QD can also be standardized by individual
quantiles. Similar to the definition of the amplitude com-
ponent of the SAL measure (WERNLI et al., 2008), the
scaling of the error preferably is done by the arithmetic
mean of the rainfall amounts under comparison:

QD′(p) =
2 QD(p)

qobs(p) + qmod(p)
(2.2)

As a matter of fact, QD describes the absolute quantile
difference whereas QD′ describes the relative quantile
deviation. QD is measured in physical units (e.g. mm).
QD′ is dimensionless and varies between −2 and +2.
A positive QD or QD′ corresponds to a wet bias, i.e.
an overestimation of precipitation. A negative QD or
QD′ stands for a dry bias, i.e. an underestimation of
precipitation. Note that the percentaged bias constitutes
QD(p)
qobs

= 2 QD′(p)
2−QD′(p)

, but remains undefined in case of dry
observations (qobs = 0 mm). As the case may be, it is
more convenient to display QD or QD′.

It is advisable to weight the relative quantile deviation
while expressing the overall performance over precipi-
tation magnitudes. The weighted integral over quantiles
preferably is computed with the absolute value, because
deviations with a varying sign cancel each other out in
the average. Since the quantile difference originally is
an additive quantity, we use the arithmetic mean of ob-
served and modeled quantiles as weighting function:

QD′ =
1∫

w(p)dp

∫ 1

0
w(p)|QD′(p)|︸ ︷︷ ︸

|QD(p)|

dp (2.3)

w(p) =
qobs(p) + qmod(p)

2

Note that QD′ only varies between 0 and +2 and does
not scale linearly with the bias. Amplitude deviations of
5 %, 10 %, 20 %, 40 % and 80 % lead to QD′ values of
0.049, 0.095, 0.182, 0.333 and 0.571, respectively. The
lower the value of QD′ the more alike are the compared
distributions in terms of intensities and the smaller is the
overall amplitude error.

C The Peirce skill score with quantiles

The conventional Peirce skill score (PEIRCE, 1884) can
be reformulated with an offset for selected quantile
probabilities dp = pmod − pobs with pmod and pobs de-
noting the quantile probabilities of the considered am-
plitude threshold:

PSS(p) = (3.1)
H

H + M
−

F

F + Z
= 1 −

M

(pobs − p2
obs)N︸ ︷︷ ︸

cmatch

−
dp

pobs︸︷︷︸
cbias

Hence, forecast deficiencies which affect the PSS are
clearly separated into a contribution resulting from an
insufficient matching (cmatch) and a contribution result-
ing from a bias (cbias). Note that the difference of fore-
cast frequencies (dp) changes the PSS more intensely
for large base rates (1 − pobs) than for small ones. The
problem of hedging results from the fact that people may
change pmod while pobs remains fixed. However, it is
eluded, if quantile probabilities coincide to each other
(p ≡ pobs = pmod, see Appendix A for details) and a
change of pmod always implicates a change of pobs. Sev-
eral skill scores merge into each other in that situation.
In particular, the Peirce skill score (PEIRCE, 1884) gets
equal to the Heidke skill score (HEIDKE, 1926) and to
the Clayton’s skill score (CLAYTON, 1934). In the debi-
ased formulation, the formula of the PSS further simpli-
fies to:

PSS(p) = 1 −
M

Mrand
Mrand = (p − p2)N (3.2)

Now, the PSS exclusively focuses on the proportion of
mismatching pixels, i.e. the magnitude of the overlap of
rain pixels. The symmetry of the random misses Mrand

(see Fig. 10b for visualization) guarantees that the debi-
ased PSS is invariant with respect to taking the comple-
ment of the events (see STEPHENSON, 2000, for details).
Therefore it is equivalent to define the quantiles going
upward or downward along the distribution. In addition,
a swapping of forecasts and observations is allowed in
our setup and the debiased PSS fulfills the requirements
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for transpose symmetry (see STEPHENSON, 2000, for
definition).

Positive PSS values indicate skill compared to a shuf-
fled sample, since a random forecast results in PSS =
0 at all times. Owing to the limited range of the four
entries in the contingency table (see Appendix A for de-
tails), the debiased PSS only varies between 1−1/(1−p)
and 1 for p ≤ 0.5 or accordingly between 1 − 1/p and
1 for p ≥ 0.5. Different probabilities for a complete
miss of all events or all non-events (Appendix A, Eq.
1.2) are included in the concept and it is not possible
to score much worse than random chance in the case of
rare events or rare non-events.

Using the definitions introduced by GANDIN and
MURPHY (1992) the PSS can be computed in differ-
ent ways corresponding to the four entries of the matrix
product between the symmetric scoring matrix S and the
symmetric performance matrix P:

SP =

(
1/p −1/p

−1/(1 − p) 1/(1 − p)

)
PSS(p)

S =

(
p/(1 − p) −1

−1 (1 − p)/p

)

P =
1

N

(
H M
M Z

)
(3.3)

Note that the scoring matrix S determines the nature of
the PSS, i.e. the way how the PSS is defined using the
performance matrix P.

To analyze the debiased PSS, it can be additionally
transformed into the debiased POD. However, the con-
venient characteristics of the PSS are then lost:

POD(p) = 1 − p (1 − PSS(p)) (3.4)

Individual PSS values can be integrated to express the
overall matching performance. The weighted average
over all quantiles accounts for the collective skill. Note
that the PSS depends on the definition of the contin-
gency table, if any one of the quantile values qobs or
qmod vanishes, because rainfall distributions usually ex-
hibit a large amount of ties at 0 mm. To avoid problems
at 0 mm, the geometric mean of observed and modeled
quantiles is used as weighting function:

PSS =
1∫

w(p)dp

∫ 1

0
w(p) PSS(p) dp

w(p) =
√

qobs(p)qmod(p)

(3.5)

The higher the value of PSS the larger is the pixel
overlap and the smaller is the overall shift error.

D The interpretation of the Peirce skill
score

To clarify the peculiarity of the PSS with quantiles,
a simple forecast situation can be considered covering
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Figure 12: Examples for 95 % confidence intervals (lines without
markers) obtained from a bootstrap sample with 500 repetitions for
the QD (gray, left scale) [mm/day] and the debiased PSS (black, right
scale): The Jura during NID (16/09/2003 until 15/11/2004, 427 days)
and the Middleland during NIP (16/11/2004 until 31/12/2006, 776
days) are displayed.

daily rainfall amounts for 8 days. We assume that the
observations peak on day four and five and have a distri-
bution as in Fig. 11a. Then two constructed forecasts can
be evaluated with distributions as in Figs. 11b, c. The
first forecast exhibits a pure shift error of 1 day whereas
the second forecast exhibits a pure bias with an over-
estimation of QD = 2 mm/day. Initially, we compute
the contingency table based on an amplitude threshold
with 3 mm/day and therefore verify the forecasts with-
out a calibration. The two error types produce the same
skill, as the PSS constitutes 0.5 for both forecasts. Thus,
the origin of the error (a temporal shift or an amplitude
overestimation) is not detected by the PSS in the conven-
tional formulation. Then we compute the contingency
table based on the median of daily rainfall amounts.
Note that the effective threshold remains 3 mm/day in
the observations and the first forecast, but changes to
5 mm/day in the second forecast. Therefore we now ver-
ify the forecasts after being calibrated. The PSS auto-
matically is debiased and only detects the shift error. The
resulting PSS values now are 0.5 for the first forecast and
1 for the second forecast. The displayed skill is no longer
influenced by the bias and differs considerably in the two
predictions. However, the skill might be regarded as po-
tential, as the calibrated forecast is not issued, but only is
used to reformulate the verification problem. This sim-
ple example illustrates that the two error types are no
longer mixed in the PSS. If the bias is rated as well, it is
straightforward to interpret the verification outcome in
terms of shift and amplitude errors.

E The uncertainty of results

Essentially, the estimation of the sample quantiles is sen-
sitive to the available dataset (e.g. CONOVER, 1999).



846 J. Jenkner et al.: Quantile-based short-range QPF evaluation over Switzerland Meteorol. Z., 17, 2008

Since rainfall distributions usually are highly skewed,
only few nonparametric methods exist to quantify the
uncertainty of the computed quantiles. A convenient ap-
proach is described by CONOVER (1999). If a dataset is
considered independent and identically distributed, the
binomial distribution describes the probability that a sin-
gle data point constitutes the targeted quantile. The con-
fidence intervals are determined using the order statistics
and the resulting [r, s] interval is then converted to quan-
tiles. The positions r and s in the order statistics can be
obtained as:

r = Np + yα/2

√
Np(1 − p)

s = Np + y1−α/2

√
Np(1 − p)

(5.1)

Intrinsically, yα/2 and y1−α/2 denote quantiles of the bi-
nomial distribution and Np(1 − p) represents its vari-
ance. If N is sufficiently large, the central limit theorem
can be applied. Then yα/2 and y1−α/2 can be taken from
the standard normal distribution.

Let us exemplify the proceeding of CONOVER (1999)
by means of the highest evaluated quantile in the small-
est and the largest regional sample. The Jura only en-
compasses N = 23485 data items during the period NID
(427 days × 55 grid points, see Section 5 for details).
Observed and modeled 99 % quantiles correspond to
38.4 mm and 27.2 mm respectively. Following the ex-
plained method, the confidence interval (95 % signifi-
cance level) ranges from r = 23220 to s = 23280 which
implies [37.4 mm, 39.5 mm] and [25.5 mm, 28.7 mm].
In contrast, the Middleland encompasses N = 210296
data items during the period NIP (776 days × 271 grid
points, see Section 5 for details). Observed and modeled
99 % quantiles correspond to 29.4 mm and 33.6 mm
respectively. The confidence interval now ranges from
r = 208104 to s = 208283 which implies [29.1 mm,
29.8 mm] and [33.1 mm, 34.2 mm]. On account of the
larger sample, the uncertainty is much smaller in the sec-
ond case.

For the error itself, the overall sample uncertainty sub-
divides into two different parts. One portion relates to
the bias and another one relates to the pixel overlap. On
the one hand, the estimation of quantiles directly affects
the uncertainty of the quantile difference. Provided that
observed and forecast values are independent, variances
add up to that of the difference. On the other hand, the
determination of matching and non-matching pixels af-
fects the uncertainty of the Peirce skill score. HANSSEN
and KUIPERS (1965) derived the variance of the PSS by
means of parametric assumptions. In our notation, it can
be written as:

var(PSS(p)) =
1

N

(
1

4p(1 − p)
− PSS(p)2

)
(5.2)

Following equation 5.2, the uncertainty of the PSS is
highest for extreme quantiles and PSS values close to
zero. In contrast, it is lowest for quantiles around the

median and PSS values close to 1.
Strictly speaking, the spatial correlation among in-

dividual grid points is crucial and must be maintained
while estimating uncertainties of regional scores. In
contrast, individual days are approximately independent
from each other. Thus, meaningful confidence intervals
are obtained by fixing the spatial configuration and vary-
ing the temporal composition. Proper resampling meth-
ods are explained by FERRO et al. (2005). We apply a
bootstrap with 500 repetitions and computed quantile-
based confidence intervals. In other words, we resample
available days with replacement and use ordinary quan-
tiles to determine confidence limits. Once again, we take
the Jura during NID and the Middleland during NIP for
illustration purposes (Fig. 12). The uncertainty gener-
ally is much smaller in the larger sample. Confidence
intervals of the quantile difference tend to spread when
moving to higher quantiles, because they are not inde-
pendent from the amplitudes. The uncertainty of the de-
biased PSS only slightly increases for rare events which
is in contrast to a conventional computation based on
amplitude thresholds.
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