

Short to medium range coupled modeling at the US National Weather Service;

moving toward unified modeling approaches

Hendrik L. Tolman Director, Environmental Modeling Center NOAA / NWS / NCEP

Hendrik.Tolman@NOAA.gov

9th CAWCR workshop, Oct. 2015

Tolman, US NWS coupled modeling

page 1 of 19

Content

- The suite in 2 minutes
- Emerging requirements
- Forces driving unification of the model suite
 - UMAC (UCACN model advisory committee)
 - NGGPS (Next Generation Global Prediction System)
- What does this mean for our production suite?
 - High-level plans for simplified production suite
 - Unified Global Coupled Model
 - Dynamic cores
 - Physics
 - Data Assimilation

Seamless Suite, spanning weather and climate

9th CAWCR workshop, Oct. 2015

Tolman, US NWS coupled modeling

page 3 of 19

Production suite ca. January 2014

Emerging requirements

- Weather Ready Nation.
 - Products.
 - Social science.
- High impact events.
- Weather to climate—seamless suite of guidance and products.
 - Week 3-4.
 - Systematic reforecast need.
 - Forecast uncertainty.
 - Calibration of outlook products.
- Range of products beyond weather:
 - Land, ice, ocean, waves, aerosols, (ecosystems, space weather).
 - Water cycle, National Water Center (NWC).

(Talk on Tuesday)

(Talk on Tuesday)

- UCACN Model Advisory Board
 - Review production suite (August 2015)
 - Strategic level.
 - Team from academia, stakeholders / contributors heard, but not on the panel itself.
- Some key findings:
 - Simplify / unify model suite.
 - Lack of requirements process.
 - Better process to identify development paths.
 - "end-to-end" management of implementations.
 - Evidence driven decision.
 - No more predetermined (relative) compute resources for individual applications (our previous "jigsaw puzzle").

NGGPS (Next Generation Global Prediction System)

- NWS R2O funding and NGGPS projects.
 - For first time NWS is funding agency.
 - Fund gaps in operations.
 - Project based funding for strategic development.
 - Within US government.
 - Academia, with NWS partners / champions.
 - Test beds for R2O.
 - Key element in NGGPS
 - Next generation Dycore Selection.
 - Unified physics interface, focus on physics.
 - Model Coupling
 - Started with Climate Forecast System
 - Arctic modeling

Production suite

- We have tended to *implement solutions* rather than *satisfy requirements*.
- Moving away from this:
 - Need better NWS requirements process.
 - Map requirements to products (not models).
 - Target model development better to requirements.
 - Business case is integral part of decisions.
 - Unified model with concentrated effort, versus
 - models tailored to selected requirements.
- Additional considerations
 - Coupled modeling needs to be considered in this context.
 - Focus on predictability and outlook products requires systematic ensemble / reanalysis (retrospective) / reforecast approach.

What could this mean for weather products ?

Range	Year	Month	Week	Day	Hour
Target	Seasonal outlook	S2S outlook	Medium range weather	Convection resolving	Warn On Forecast
Present models	CFS	"GEFS"	GFS / NAM / SREF / RAP / HWRF	HRRR / NAM nest / HiresW	none
Cadence	??? (is 6h)	6-24h (is 6h)	6h	1h	5-15m
Range	9-15 mo global	35-45d global	Up to 10d global (?)	18-24h regional	3h ? regional
Updates	4y	2у	1y	1y	1y
Reanalysis	1979-present	20-25y	Зу	???	???
Where	???	WCOSS	WCOSS	WCOSS	???

- Ensemble based DA for all ranges (day and hour TBD).
- Unified global model with applications for ranges.
- Global / regional unification ?

- Target R&D resources to move here(critical science questions).
- Hurricanes & Space weather need to find place in layout.
- Map to requirements to set metrics.

Coupling

- This is not just a science problem
 - Requirements for additional, traditionally downstream products.
 - "One-way" model coupling versus downstream model:
 - Increases forcing resolution of downstream models while
 - reducing I/O needed to force models.
 - Creates a better integrated test environment for holistic evaluation of model upgrades.
 - Less implementations.
 - Creates environment for investigating benefits of two-way coupling. Enables two-way coupling if science proves benefit.
- Negative aspects of coupling:
 - More complex modeling systems implementations.
 - Less flexibility to tailor products.

Coupling

- The table below identifies which of the potentially coupled model components already have products or in the production suite corresponding to the five forecast ranges.
 - Where no products exists, science may indicate benefit of coupling.
 - For the hourly forecast range, all still TBD.

Subsystem	Year	Month	Week	Day	Hour
Land / hydro	Y	Y	Y	S	?
Ocean / coast	Y	Y	Y	S/R	?
Ice	Y	Y	S	?	?
Waves	S	Y	Y	Y	?
Aerosols	S	S	Y	Y	?

Y: present product S: science benefit R: unmet requirement ?: TBD

Coupling

	Influencing					
	Atmos.	Land / hydro	Ocean / coast	ice	waves	Aerosols
Atmos.		yes	yes	yes	yes	yes
Land/hydro	yes		inflow	yes	inundation	
Ocean/coas t	yes	inundation		yes	WCI	climate
Ice	yes		yes		yes	
Waves	fluxes		WCI	yes		
Aerosols	climate					

Green boxes:	light:	tradition 1-wy downstream coupling	
	dark:	two-way coupling in selected operations.	
Grey boxes:	fixed data, not dynamic coupling		
Black text:	presently in place.		
Red text:	science h	as shown impact	

Back to NGGPS HOW TO GET THERE

9th CAWCR workshop, Oct. 2015

Modular modeling, using ESMF to modularize elements in fully coupled unified global model (+ ionosphere, ecosystems,)

NGGPS dycore

- Selecting a new dynamic core for global model to serve the NWS for the coming decades.
 - Architecture suitable for future compute environments.
 - Non-hydrostatic to allow for future convection-resolving global models.
- 18 month process to down-select candidate cores.
- 5 year plan to replace operations.
- Core → NEMS → applications.
 - GSM-NH (EMC)
 - MPAS (NCAR)
 - FV3 (GFDL)
 - NIM (ESRL)
 - NEPTUNE (NRL)
 - NMMB-UJ (EMC)

NGGPS physics

Version 1.0 delivered June 2015

- Atmosphere: Hybrid 4D-EnVAR approach using a 80member coupled forecast and analysis ensemble, with Semi-lagrangian dynamics, and 128 levels in the vertical hybrid sigma/pressure coordinates.
- Ocean/Seaice: GFDL MOM5.1/MOM6-SIS and/or HYCOM-CICE for the ocean and sea-ice coupling, using the NEMS coupler.
- Aerosols: Inline GOCART for aerosol coupling.
- Waves: Inline WAVEWATCH III for wave coupling.
- Land: Inline Noah Land Model for land coupling.

NCEP Coupled Hybrid Data Assimilation and Forecast System

9th CAWCR workshop, Oct. 2015