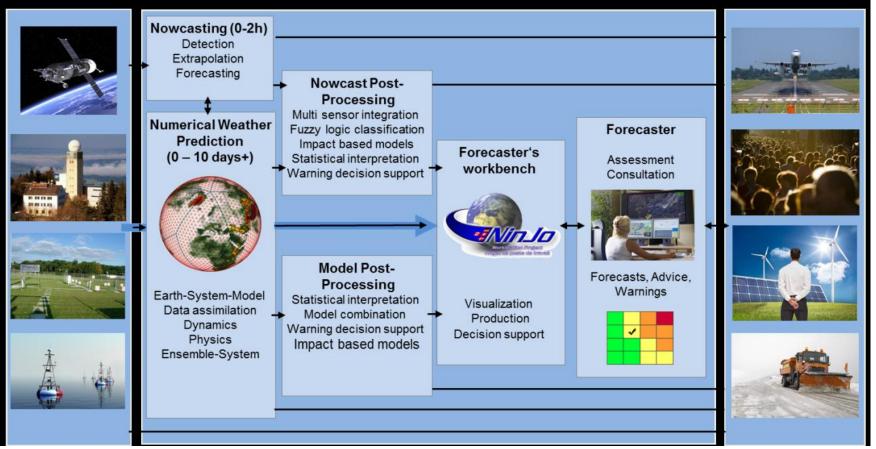
Emerging Methods for High Impact Weather Prediction and Observation

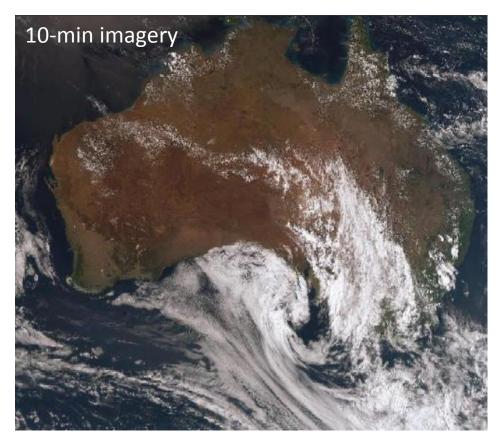
Beth Ebert

Research Program Leader, Weather & Climate Information Bureau of Meteorology

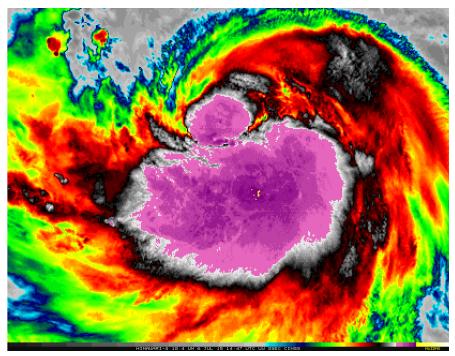
(with acknowledgments to many colleagues!)


The Collaboration for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Observations


Nowcasting/Forecasting

Customers


(Heizenreder et al. 2015, in WWRP, 2015: Seamless Prediction of the Earth System: from Minutes to Months)

Himawari-8 geostationary satellite

Channel	Wavelength (µm)	Spatial Resolution	Senses
1	0.43 -0.48	1 km	RGB <i>true</i> <i>colour</i> image
2	0.50 -0.52	1 km	
3	0.63 -0.66	0.5 km	
4	0.85 -0.87	1 km	Vegetation, cloud
5	1.60 -1.62	2 km	
6	2.25 -2.27	2 km	
7	3.74 -3.96	2 km	Cloud
8	6.06 -6.43	2 km	Water vapour
9	6.89 -7.01	2 km	
10	7.26 -7.43	2 km	
11	8.44 -8.76	2 km	SO ₂
12	9.54 -9.72	2 km	O ₃
13	10.3 -10.6	2 km	Surface, SST, volcanic ash
14	11.1-11.3	2 km	
15	12.2 -12.5	2 km	
16	13.2 -13.4	2 km	CO ₂

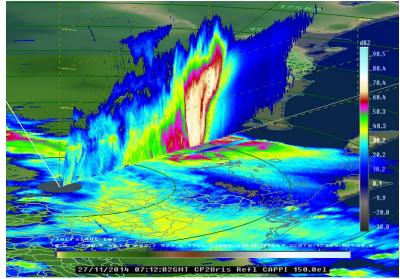
Himawari-8 geostationary satellite

"Target Sector" 2.5-min resolution

Enhanced 10.4 μ m imagery

TC Chan-Hom, 1447-2002 UTC on 6 July 2015

(http://cimss.ssec.wisc.edu/goes/blog/archives/category/himawari-8)

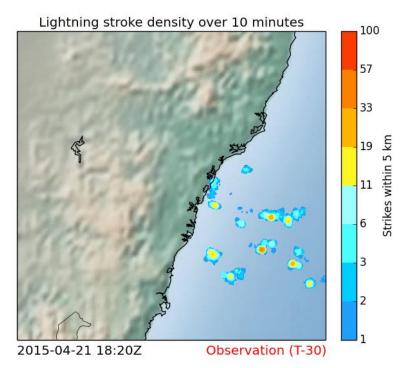

Himawari-8 geostationary satellite

Highest priority products

Cloud and moisture imagery	Cloud top temperature	
Cloud top pressure and height	Derived motion winds	
Low cloud and fog	Volcanic ash	
Sea surface temperature	Image enhancements	
Downward solar insolation at surface	Radiances / clear radiances	
Convective initiation	Clear sky mask	
Rainfall rate	Total precipitable water	
Tropical cyclone intensity	Enhanced V / overshooting top	
Fire / hotspot characterisation	Thunderstorm nowcasts	

Dual-polarimetric radar

- Better quality control, improved precipitation rates and severe weather classification
- Research and operational tool
 - CPOL (Darwin), CP2 (Brisbane) research radars
- USA, European dual-pol radar networks
- Plans for Australia
 - CP2 being decommissioned
 - Upgrade capital city radars to dual-pol in next two years


Brisbane supercell storm 27 Nov 2014

Courtesy Phil Purdam

Lightning detection and applications

New lightning detection service for the Bureau of Meteorology

- Long-range cloud-to-ground lightning coverage over the Melbourne and Brisbane Flight Information Regions (FIRs), mainly for aviation
- 2. High-resolution national lightning service with improved in-cloud detection efficiency

Lighting nowcasting/tracking (early stage prototype)

New types c

- Third party networks
- Social media (e.g., Twitter)
 - CSIRO Emergency Situation Awareness (ESA)
- Crowd-sourcing of weather and impact data
 - mPING (Meteorological Phenomena Identification Near the Ground) app for winter weather
 - WOW (Weather on the Web)

Bureau of Meteorology has collaborated with the Met Office (the UK's National Weather Service) so Australians may easily lodge and share

WOW – Weather on the Web http://bom-wow.metoffice.gov.uk/

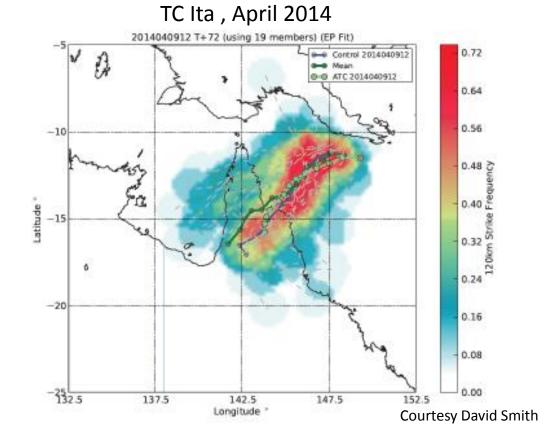
ACCESS NWP model plans

Configuration	APS-2 (Op: 2015)	APS-3 (Op: Mid-2018)	APS-4 (Op: End 2020)
ACCESS-G global	25 km {4dV}	12 km {4dVH}	12 km {4dVH/En}
ACCESS-R regional	12 km {4dV}	8 km {4dVH}	4.5 km {4dVH/En}
ACCESS-TC tropical cyclone	12 km {4dV}	4.5 km {4dVH}	4.5 km {4dVH}
ACCESS-GE ensemble	60 km (lim)	30 km	30 km
ACCESS-C city	1.5 km {FC}	1.5 km RUC {4dVH}	1.5 km RUC {4dVH/En}
ACCESS-CE city ensemble	-	2.2 km (lim)	1.5 km
ACCESS-X relocatable	-	1.5 km {4dVH}	1.5 km {4dVH/En}
ACCESS-XE reloc. ensemble	-	-	1.5 km

Ensemble/probabilistic forecasting

- Internal and external users can make better decisions when quantitative uncertainty information is provided (e.g., probabilistic forecasts, scenarios)
- Future service requirements for probabilities of exceeding:

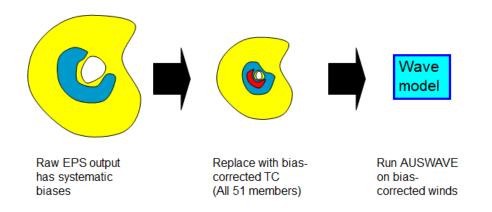
High fire danger conditions Conditions C favourable s for severe weather

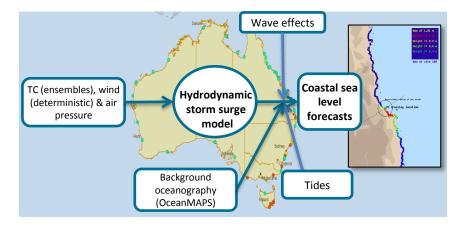

Critical heat Critical rain stress index accumulation thresholds

Critical wind speeds, e.g., gales Critical flood heights Critical wave heights

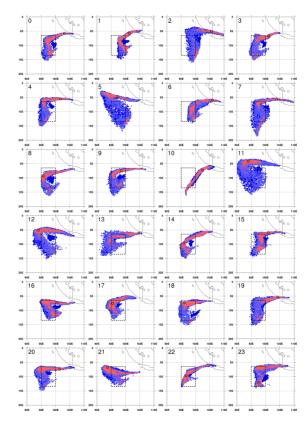
TC strike probability

Tropical cyclone track

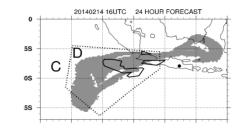

- TC tracks for individual ensemble members and ensemble mean
- Strike probability (within 120 km)



Improved TC hazard predictions


Downscale global ensemble winds to drive wave model

Storm surge

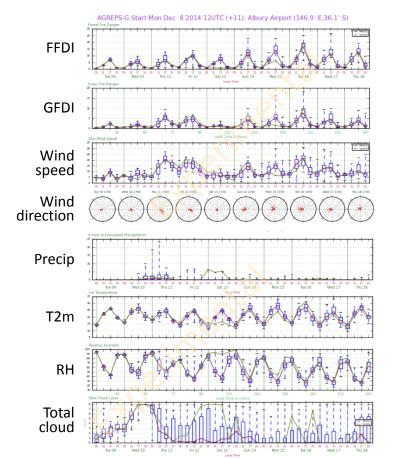


Courtesy Jeff Kepert and Eric Schulz

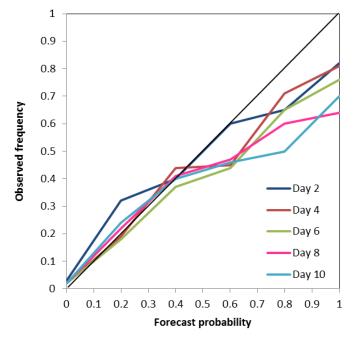


Volcanic ash dispersion

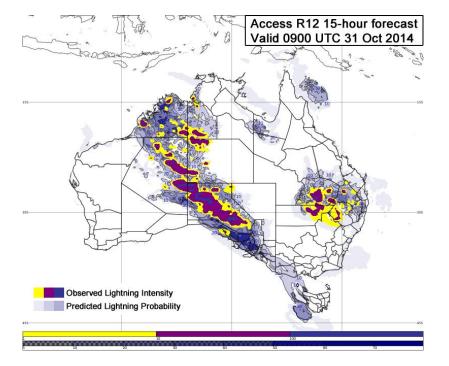
• HYSPLIT dispersion model run from 24 ACCESS-GE ensemble members



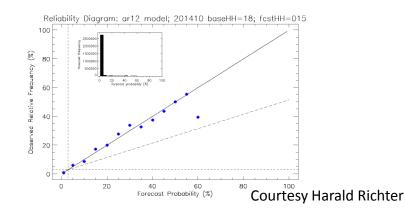
Single control member


Ensemble probability

Individual member 24-hour forecasts of ash concentration in the 10-15 km layer.

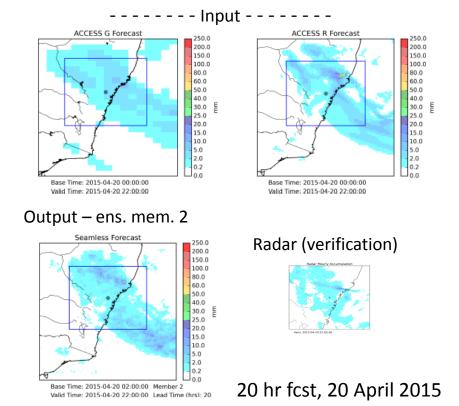

Fire weather

P(FFDI ≥ 25), 43 NSW stations, Dec14-Feb15



Courtesy David Smith

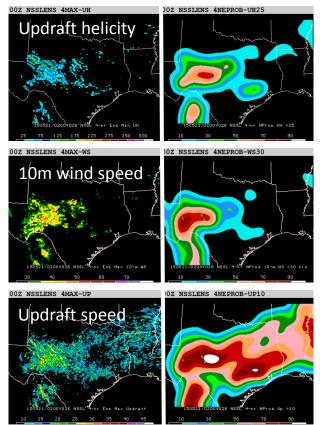
Thunderstorm probability



- "Calibrated thunder"
- Combine (lagged) ensemble NWP Prob(CPTP>1) and Prob(rain_{3h}≥ 0.25 mm), calibrate against observed lightning frequency over past 30 days

Seamless rainfall ensemble

- Blend NWP models, weighting by *spatial scale* at each lead time
- Downscale using stochastic model based on radar rainfall
 - → 50 stochastic ensemble members, 2km, hourly to 10 days
- Next: Apply to dynamical ensemble

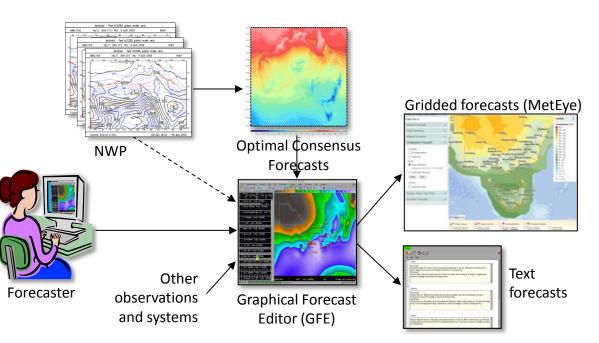


Courtesy Alan Seed

High resolution ensembles

- Designed to aid short range forecasting of high impact weather
- Modelling challenges
 - Domain size and lateral boundary conditions
 - Data assimilation and ensemble initial conditions
 - Partially resolved convection ("grey zone")
 - Number of ensemble members

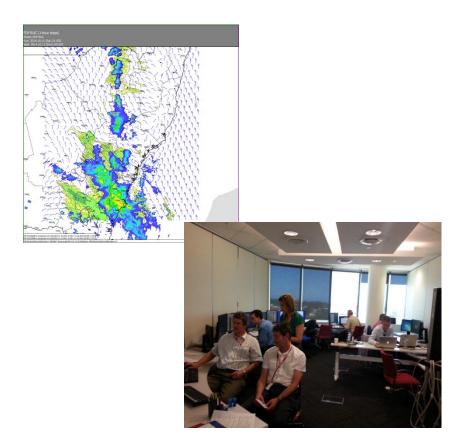
NSSL WRF ensemble 4-hourly maximum storm attribute fields (left) and corresponding 4-hourly neighbourhood probabilities (right)

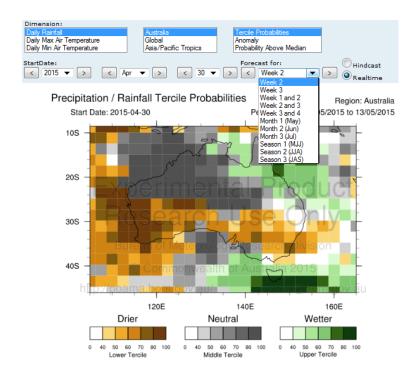

Statistical post-processing

- Adds value to raw model output and nowcasts
 - Blends output from multiple NWP inputs
 - Calibration increases accuracy by removing bias in predicted variables, probabilities, ensemble spread
 - Smooths out unrealistic detail and "spreads" probabilities in space
 - Downscales to higher spatial resolution, e.g., to account for topography
- Transforms large amounts of data into more usable information
 - Alerts for forecasters based on critical thresholds
 - Derived products (e.g., thunderstorm probability)

Direct use of (post-processed) numerical guidance in forecast generation

Next Generation Forecast & Warning System


- Optimal use of NWP
- Grid editing tools
- Automated text generation
- Systematic forecast process

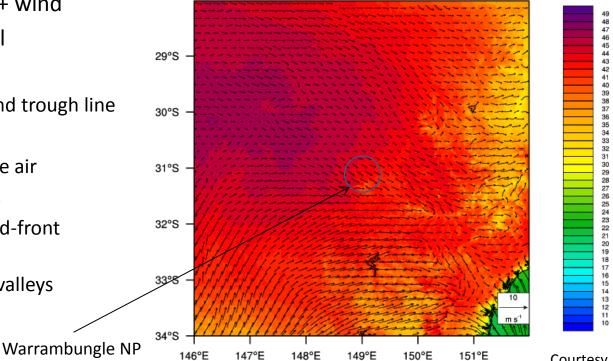

Forecast Demonstration Projects

Sydney 2014 FDP

- How to use 1.5km, hourly rapid update model (RUC) in forecasting?
- Researchers and forecasters worked side by side for 10 weeks
- Tests of new tools and applications
- High-res RUC preferred to existing models
- Improved forecaster conceptual understanding of the meteorological situation on the mesoscale

Bridging time scales

Weather \rightarrow multi-week \rightarrow seasonal

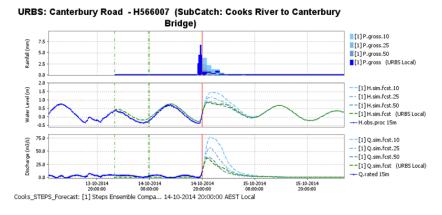

- Sources of predictability land surface, tropical convective regime (MJO)
 - Heat waves and cold snaps
 - Dry and wet spells
 - TC genesis
- Improved coupled seasonal and multiweek prediction capability in ACCESS-S

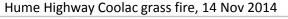
Simulating high impact weather

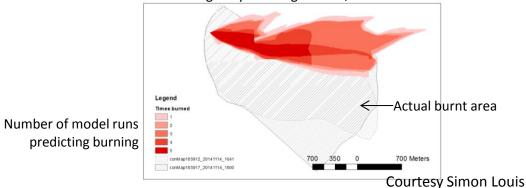
- Screen temperature + wind
- 0.012° ACCESS model
- Notable features
 - Wind curvature around trough line
 - Convective outflows
 - Incursions of maritime air
 - Colliding change lines
 - Main change with cold-front characteristics
 - Pooling of cold air in valleys

Coonabarabran fire, January 2012

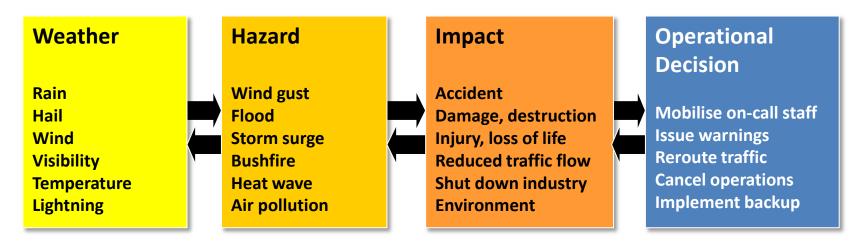
2013-01-12 04:50 UTC, temp. (deg C)

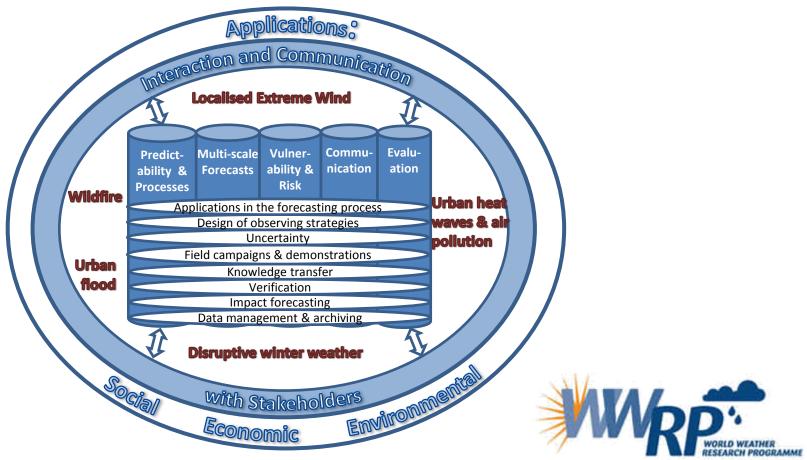

Courtesy Jeff Kepert


Bridging domains


Weather \rightarrow hazards

 Precipitation forecasts input to hydrological model for flood prediction


• High-res weather input to bushfire spread model



Hazard impact prediction

- Explicit use of weather forecasts to predict hazard impacts
- Opportunities to partner with the emergency management, health, infrastructure, resource, and other sectors to provide new targeted products to help meet their needs

WMO High Impact Weather (HIWeather) project

WMO High Impact Weather (HIWeather) project

Research questions

- How far in advance can we predict high impact weather and associated hazards?
- How can new data sources be exploited to observe weather hazards and impacts and initialise models?
- What are improved approaches to assessing weather-related vulnerability and risk?
- Many more!

Application development

- Weather, hazard and impact forecasts based on dynamic modelling, expressed as scenarios and probabilities
- Decision support tools that link hazards with risk and vulnerability
- Tools for communication and evaluation of hazards

Activities

- Forecast & Research Demonstration Projects
- Workshops on specific hazards & applications
- Develop applications for/with specific users
- Inter-comparisons of techniques

- Reviews of better practice
- Engagement with practitioners in risk, economics, social science
- Case study evaluation

http://www.wmo.int/pages/prog/arep/wwrp/new/high_impact_weather_project.html

The road ahead

- More and better observations, especially from remote sensing
- Improvements in numerical weather prediction
- Post-processing of model output
- Quantification of forecast uncertainty
- Seamless prediction across timescales and domains
- Increasing focus on users and applications
- Prediction of hazard impacts
- Underpinned by increasing scientific understanding!

Bureau of Meteorology

The Collaboration for Australian Weather and Climate Research

A partnership between CSIRO and the Bureau of Meteorology

Beth Ebert Research Program Leader, Weather and Climate Information

Phone: 03 9669 4688 Email: e.ebert@bom.gov.au Web: www.cawcr.gov.au

