

From CSIRAC to Cray (again) and onwards

• Robert C. Bell – CSIRO and Bureau of Meteorology

CSIRO INFORMATION MANAGEMENT & TECHNOLOGY

SCIENTIFIC COMPUTING

Summary

- The past:
 - history of computing support for science in Australia
- The present:
 - the Bureau's Cray system
- The future:
 - computing for science

History of Compute performance in CSIRO

CSIRO Peak Computing Systems

History of Computing in the Bureau

Early computing

Courtesy Nigel Tout (www.VintageCalculators.com)

MADAS 20BZS circa 1950s-1960s

Early history

- CSIRAC in CSIR Radiophysics from 1949
 - Moved to University of Melbourne in 1956
 - Dick Jensen ran first numerical forecasts in Australia on CSIRAC
- CSIRO Computing Research CDC 3600 (used by Bureau until IBM 360/65 systems in 1968)
- CSIRO: Csironet: CDC Cybers, then post-Csironet Crays
- Bureau: FACOMs, ETA, Crays
- HPCCC: NEC

CSIRO HPC Systems

History

Provision of:

- Systems compute
- Storage HSM
- •Software Open Source treasury
- Services Help Desk, backups, etc
- Support people with knowledge

The present: Bureau's Cray system

- New data centre
- Cray XC40 widely adopted in the community
- Features:
 - Intel Xeon Haswell processors:
 - FMA3: d=round(a x b + c) ; Variable clock speed
 - Dense packaging: 384 processors per cabinet: 90 kW
 - Special compute-node Linux version: low jitter
 - Water cooled
 - Two partitions: for resiliency: compute and storage
 - Aries interconnect:
 - 48-port routers, 500 Gbyte/s; dragonfly topology

Cray XC Rank1 Network

Australis HPC

Parameter	Oracle HPC System	2015 System	2018 System	Relative Increase
Processor	Intel Xeon Sandy Bridge 6-core 2.5GHz	Intel Xeon Haswell E5-2690v3 12-core 2.6GHz	Intel Xeon Haswell + Skylake	Increase relative to Oracle HPC System Ngamai
Nodes	<mark>576</mark>	<mark>2,160</mark>	4,112	2015: 3.8x 2018: 7.1x
<mark>Cores</mark>	<mark>6,912</mark>	<mark>51,840</mark>	129,920	2015: 7.5x 2018: 18.8x
Aggregate Memory	36.9 TB	276 TB	651 TB	2015: 7.5x 2018: 17.7x
Global Filesystem Technology	Oracle Lustre 1.8.8	Sonexion Lustre 2.5.1+	Sonexion Lustre 2.x	
Usable Storage	214 TB	4,320 TB	8,640 TB	2015: 20.3x 2018: 60.5x
Storage Bandwidth	16 GB/s	135 GB/s	306 GB/s	
Compute Interconnect	Mellanox Infiniband QDR 40Gb/s	Cray Aries 93 – 157Gb/s	Cray Aries 93 – 157Gb/s	
Typical Power Use (kiloWatts)	200 kW	865 kW	1,648 kW	2015: 4.3x 2018: 8.2x
Sustain system performance <mark>(SSP)</mark>	<mark>16</mark>	<mark>253</mark>	618	2015: 15.6x 2018: 38.1x
Top 500 R _{max} Linpack (TF)	104	1663	5000+	2015: 16.0x 2018: 50.0x

Operational Capacity (Half of total capacity)

NWP Computing Capacity of National Meteorological Centres

Future possibilities

- Systems no more easy gains?
- Storage cloud?
- Software narrowing of options because of architectures
- Services computer science, collaboration, visualisation
- Support people with knowledge

Stream2 - 2004

Future systems

- Systems more cores, not much faster?
- Limited bandwidth gains
- Accelerators: for some applications
 - CSIRO accelerated computing program GPU systems – some success
- Commodity market ARM processors?

Future Storage

- Ten years ago, I wrote:
 - Users typically want every file kept and backed-up, and would be happy to use only one file system, globally visible across all the systems they use, with high-performance everywhere, and infinite capacity!
 - A user added that they want all of the above, at zero cost!
- Storage cloud? Regulatory, cost and protection issues
- Storage for HPC Lustre, fast, parallel, but not very reliable.
- Object stores rather than filesystems?
- Tape persists, even in cloud
- CSIRO Cloud storage

Future: Software

- Explosion in consumer software but, in HPC, narrowing of options because of architectures
- Massive investment in major models
- Collaboration essential
- CSIRO eResearch model

E-enablement

equipping the organisation to perform activities more efficiently through electronic means. The e-enablement layer includes general computing and storage, networks and office productivity tools both onpremise and remote

eResearch

the rapid evolution of research methodologies enabled by information technologies and tools. The eResearch layer includes scientific computing and storage, research data management, visualisation, advanced collaboration technologies and productivity tools.

Consolidate infrastructure Increase reliability/availability Achieve economies of scale

Virtualise

Expand scientific computing Embed enterprise-level research data management Extend collaboration/e-tools

Develop visualisation services

IM&T eResearch Supports the Entire Science Data Workflow

26 |

eResearch Project Services

• Submission History

RFP Responses by Type

Future: services

- File protection (backup)
- Computer science
- Collaboration
- Visualisation
- Buzz words: e.g. Big Data

Future: support

- People with knowledge
- Critical mass
- Training little HPC knowledge from undergraduates (Fortran?)
- Staff with commitment to science support
- Bureau: Scientific Computing Services

Conclusion: From CSIRAC to Cray (again) and onwards

- We've come a long way in computing for atmospheric and ocean sciences
- Major acquisition by Bureau for operational computing
- Hard to see future, but we know some dead-ends
- Forecast models running on phones?

Thank you

CSIRO IM&T Scientific Computing Services Robert C. Bell

- t +61 3 9669 8102 | +61 3 9545 2368
- e Robert.Bell@csiro.au
- w www.hpsc.csiro.au

CSIRO IM&T SCIENTIFIC COMPUTING SERVICES www.csiro.au

